Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+\sqrt{3}\right)\left(7-3\sqrt{3}\right)}{\left(7+3\sqrt{3}\right)\left(7-3\sqrt{3}\right)}
Rationalize the denominator of \frac{4+\sqrt{3}}{7+3\sqrt{3}} by multiplying numerator and denominator by 7-3\sqrt{3}.
\frac{\left(4+\sqrt{3}\right)\left(7-3\sqrt{3}\right)}{7^{2}-\left(3\sqrt{3}\right)^{2}}
Consider \left(7+3\sqrt{3}\right)\left(7-3\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+\sqrt{3}\right)\left(7-3\sqrt{3}\right)}{49-\left(3\sqrt{3}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\frac{\left(4+\sqrt{3}\right)\left(7-3\sqrt{3}\right)}{49-3^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(3\sqrt{3}\right)^{2}.
\frac{\left(4+\sqrt{3}\right)\left(7-3\sqrt{3}\right)}{49-9\left(\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(4+\sqrt{3}\right)\left(7-3\sqrt{3}\right)}{49-9\times 3}
The square of \sqrt{3} is 3.
\frac{\left(4+\sqrt{3}\right)\left(7-3\sqrt{3}\right)}{49-27}
Multiply 9 and 3 to get 27.
\frac{\left(4+\sqrt{3}\right)\left(7-3\sqrt{3}\right)}{22}
Subtract 27 from 49 to get 22.
\frac{28-12\sqrt{3}+7\sqrt{3}-3\left(\sqrt{3}\right)^{2}}{22}
Apply the distributive property by multiplying each term of 4+\sqrt{3} by each term of 7-3\sqrt{3}.
\frac{28-5\sqrt{3}-3\left(\sqrt{3}\right)^{2}}{22}
Combine -12\sqrt{3} and 7\sqrt{3} to get -5\sqrt{3}.
\frac{28-5\sqrt{3}-3\times 3}{22}
The square of \sqrt{3} is 3.
\frac{28-5\sqrt{3}-9}{22}
Multiply -3 and 3 to get -9.
\frac{19-5\sqrt{3}}{22}
Subtract 9 from 28 to get 19.