Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{\left(2\sqrt{3}-2\right)\left(2\sqrt{3}+2\right)}
Rationalize the denominator of \frac{4+\sqrt{3}}{2\sqrt{3}-2} by multiplying numerator and denominator by 2\sqrt{3}+2.
\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{\left(2\sqrt{3}\right)^{2}-2^{2}}
Consider \left(2\sqrt{3}-2\right)\left(2\sqrt{3}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{2^{2}\left(\sqrt{3}\right)^{2}-2^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{4\left(\sqrt{3}\right)^{2}-2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{4\times 3-2^{2}}
The square of \sqrt{3} is 3.
\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{12-2^{2}}
Multiply 4 and 3 to get 12.
\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{12-4}
Calculate 2 to the power of 2 and get 4.
\frac{\left(4+\sqrt{3}\right)\left(2\sqrt{3}+2\right)}{8}
Subtract 4 from 12 to get 8.
\frac{8\sqrt{3}+8+2\left(\sqrt{3}\right)^{2}+2\sqrt{3}}{8}
Apply the distributive property by multiplying each term of 4+\sqrt{3} by each term of 2\sqrt{3}+2.
\frac{8\sqrt{3}+8+2\times 3+2\sqrt{3}}{8}
The square of \sqrt{3} is 3.
\frac{8\sqrt{3}+8+6+2\sqrt{3}}{8}
Multiply 2 and 3 to get 6.
\frac{8\sqrt{3}+14+2\sqrt{3}}{8}
Add 8 and 6 to get 14.
\frac{10\sqrt{3}+14}{8}
Combine 8\sqrt{3} and 2\sqrt{3} to get 10\sqrt{3}.