Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+\sqrt{3}\right)\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}
Rationalize the denominator of \frac{4+\sqrt{3}}{2+\sqrt{5}} by multiplying numerator and denominator by 2-\sqrt{5}.
\frac{\left(4+\sqrt{3}\right)\left(2-\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+\sqrt{3}\right)\left(2-\sqrt{5}\right)}{4-5}
Square 2. Square \sqrt{5}.
\frac{\left(4+\sqrt{3}\right)\left(2-\sqrt{5}\right)}{-1}
Subtract 5 from 4 to get -1.
-\left(4+\sqrt{3}\right)\left(2-\sqrt{5}\right)
Anything divided by -1 gives its opposite.
-\left(8-4\sqrt{5}+2\sqrt{3}-\sqrt{3}\sqrt{5}\right)
Apply the distributive property by multiplying each term of 4+\sqrt{3} by each term of 2-\sqrt{5}.
-\left(8-4\sqrt{5}+2\sqrt{3}-\sqrt{15}\right)
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
-8-\left(-4\sqrt{5}\right)-2\sqrt{3}-\left(-\sqrt{15}\right)
To find the opposite of 8-4\sqrt{5}+2\sqrt{3}-\sqrt{15}, find the opposite of each term.
-8+4\sqrt{5}-2\sqrt{3}-\left(-\sqrt{15}\right)
The opposite of -4\sqrt{5} is 4\sqrt{5}.
-8+4\sqrt{5}-2\sqrt{3}+\sqrt{15}
The opposite of -\sqrt{15} is \sqrt{15}.