Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+\sqrt{2}\right)\left(\sqrt{2}+3\right)}{\left(\sqrt{2}-3\right)\left(\sqrt{2}+3\right)}
Rationalize the denominator of \frac{4+\sqrt{2}}{\sqrt{2}-3} by multiplying numerator and denominator by \sqrt{2}+3.
\frac{\left(4+\sqrt{2}\right)\left(\sqrt{2}+3\right)}{\left(\sqrt{2}\right)^{2}-3^{2}}
Consider \left(\sqrt{2}-3\right)\left(\sqrt{2}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+\sqrt{2}\right)\left(\sqrt{2}+3\right)}{2-9}
Square \sqrt{2}. Square 3.
\frac{\left(4+\sqrt{2}\right)\left(\sqrt{2}+3\right)}{-7}
Subtract 9 from 2 to get -7.
\frac{4\sqrt{2}+12+\left(\sqrt{2}\right)^{2}+3\sqrt{2}}{-7}
Apply the distributive property by multiplying each term of 4+\sqrt{2} by each term of \sqrt{2}+3.
\frac{4\sqrt{2}+12+2+3\sqrt{2}}{-7}
The square of \sqrt{2} is 2.
\frac{4\sqrt{2}+14+3\sqrt{2}}{-7}
Add 12 and 2 to get 14.
\frac{7\sqrt{2}+14}{-7}
Combine 4\sqrt{2} and 3\sqrt{2} to get 7\sqrt{2}.
-\sqrt{2}-2
Divide each term of 7\sqrt{2}+14 by -7 to get -\sqrt{2}-2.