Evaluate
-\sqrt{2}-2\approx -3.414213562
Share
Copied to clipboard
\frac{\left(4+\sqrt{2}\right)\left(\sqrt{2}+3\right)}{\left(\sqrt{2}-3\right)\left(\sqrt{2}+3\right)}
Rationalize the denominator of \frac{4+\sqrt{2}}{\sqrt{2}-3} by multiplying numerator and denominator by \sqrt{2}+3.
\frac{\left(4+\sqrt{2}\right)\left(\sqrt{2}+3\right)}{\left(\sqrt{2}\right)^{2}-3^{2}}
Consider \left(\sqrt{2}-3\right)\left(\sqrt{2}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+\sqrt{2}\right)\left(\sqrt{2}+3\right)}{2-9}
Square \sqrt{2}. Square 3.
\frac{\left(4+\sqrt{2}\right)\left(\sqrt{2}+3\right)}{-7}
Subtract 9 from 2 to get -7.
\frac{4\sqrt{2}+12+\left(\sqrt{2}\right)^{2}+3\sqrt{2}}{-7}
Apply the distributive property by multiplying each term of 4+\sqrt{2} by each term of \sqrt{2}+3.
\frac{4\sqrt{2}+12+2+3\sqrt{2}}{-7}
The square of \sqrt{2} is 2.
\frac{4\sqrt{2}+14+3\sqrt{2}}{-7}
Add 12 and 2 to get 14.
\frac{7\sqrt{2}+14}{-7}
Combine 4\sqrt{2} and 3\sqrt{2} to get 7\sqrt{2}.
-\sqrt{2}-2
Divide each term of 7\sqrt{2}+14 by -7 to get -\sqrt{2}-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}