Solve for x
x = \frac{\sqrt{489} - 13}{4} \approx 2.278336097
x=\frac{-\sqrt{489}-13}{4}\approx -8.778336097
Graph
Share
Copied to clipboard
5\left(4+\frac{x}{2}\right)=\left(x+9\right)x
Variable x cannot be equal to -9 since division by zero is not defined. Multiply both sides of the equation by 5\left(x+9\right), the least common multiple of x+9,5.
20+5\times \frac{x}{2}=\left(x+9\right)x
Use the distributive property to multiply 5 by 4+\frac{x}{2}.
20+\frac{5x}{2}=\left(x+9\right)x
Express 5\times \frac{x}{2} as a single fraction.
20+\frac{5x}{2}=x^{2}+9x
Use the distributive property to multiply x+9 by x.
20+\frac{5x}{2}-x^{2}=9x
Subtract x^{2} from both sides.
20+\frac{5x}{2}-x^{2}-9x=0
Subtract 9x from both sides.
40+5x-2x^{2}-18x=0
Multiply both sides of the equation by 2.
40-13x-2x^{2}=0
Combine 5x and -18x to get -13x.
-2x^{2}-13x+40=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\left(-2\right)\times 40}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -13 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\left(-2\right)\times 40}}{2\left(-2\right)}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169+8\times 40}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-13\right)±\sqrt{169+320}}{2\left(-2\right)}
Multiply 8 times 40.
x=\frac{-\left(-13\right)±\sqrt{489}}{2\left(-2\right)}
Add 169 to 320.
x=\frac{13±\sqrt{489}}{2\left(-2\right)}
The opposite of -13 is 13.
x=\frac{13±\sqrt{489}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{489}+13}{-4}
Now solve the equation x=\frac{13±\sqrt{489}}{-4} when ± is plus. Add 13 to \sqrt{489}.
x=\frac{-\sqrt{489}-13}{4}
Divide 13+\sqrt{489} by -4.
x=\frac{13-\sqrt{489}}{-4}
Now solve the equation x=\frac{13±\sqrt{489}}{-4} when ± is minus. Subtract \sqrt{489} from 13.
x=\frac{\sqrt{489}-13}{4}
Divide 13-\sqrt{489} by -4.
x=\frac{-\sqrt{489}-13}{4} x=\frac{\sqrt{489}-13}{4}
The equation is now solved.
5\left(4+\frac{x}{2}\right)=\left(x+9\right)x
Variable x cannot be equal to -9 since division by zero is not defined. Multiply both sides of the equation by 5\left(x+9\right), the least common multiple of x+9,5.
20+5\times \frac{x}{2}=\left(x+9\right)x
Use the distributive property to multiply 5 by 4+\frac{x}{2}.
20+\frac{5x}{2}=\left(x+9\right)x
Express 5\times \frac{x}{2} as a single fraction.
20+\frac{5x}{2}=x^{2}+9x
Use the distributive property to multiply x+9 by x.
20+\frac{5x}{2}-x^{2}=9x
Subtract x^{2} from both sides.
20+\frac{5x}{2}-x^{2}-9x=0
Subtract 9x from both sides.
\frac{5x}{2}-x^{2}-9x=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
5x-2x^{2}-18x=-40
Multiply both sides of the equation by 2.
-13x-2x^{2}=-40
Combine 5x and -18x to get -13x.
-2x^{2}-13x=-40
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-13x}{-2}=-\frac{40}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{13}{-2}\right)x=-\frac{40}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{13}{2}x=-\frac{40}{-2}
Divide -13 by -2.
x^{2}+\frac{13}{2}x=20
Divide -40 by -2.
x^{2}+\frac{13}{2}x+\left(\frac{13}{4}\right)^{2}=20+\left(\frac{13}{4}\right)^{2}
Divide \frac{13}{2}, the coefficient of the x term, by 2 to get \frac{13}{4}. Then add the square of \frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{2}x+\frac{169}{16}=20+\frac{169}{16}
Square \frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{2}x+\frac{169}{16}=\frac{489}{16}
Add 20 to \frac{169}{16}.
\left(x+\frac{13}{4}\right)^{2}=\frac{489}{16}
Factor x^{2}+\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{4}\right)^{2}}=\sqrt{\frac{489}{16}}
Take the square root of both sides of the equation.
x+\frac{13}{4}=\frac{\sqrt{489}}{4} x+\frac{13}{4}=-\frac{\sqrt{489}}{4}
Simplify.
x=\frac{\sqrt{489}-13}{4} x=\frac{-\sqrt{489}-13}{4}
Subtract \frac{13}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}