Evaluate
\frac{390101}{100}=3901.01
Factor
\frac{390101}{2 ^ {2} \cdot 5 ^ {2}} = 3901\frac{1}{100} = 3901.01
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)390101}\\\end{array}
Use the 1^{st} digit 3 from dividend 390101
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)390101}\\\end{array}
Since 3 is less than 100, use the next digit 9 from dividend 390101 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)390101}\\\end{array}
Use the 2^{nd} digit 9 from dividend 390101
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)390101}\\\end{array}
Since 39 is less than 100, use the next digit 0 from dividend 390101 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)390101}\\\end{array}
Use the 3^{rd} digit 0 from dividend 390101
\begin{array}{l}\phantom{100)}003\phantom{6}\\100\overline{)390101}\\\phantom{100)}\underline{\phantom{}300\phantom{999}}\\\phantom{100)9}90\\\end{array}
Find closest multiple of 100 to 390. We see that 3 \times 100 = 300 is the nearest. Now subtract 300 from 390 to get reminder 90. Add 3 to quotient.
\begin{array}{l}\phantom{100)}003\phantom{7}\\100\overline{)390101}\\\phantom{100)}\underline{\phantom{}300\phantom{999}}\\\phantom{100)9}901\\\end{array}
Use the 4^{th} digit 1 from dividend 390101
\begin{array}{l}\phantom{100)}0039\phantom{8}\\100\overline{)390101}\\\phantom{100)}\underline{\phantom{}300\phantom{999}}\\\phantom{100)9}901\\\phantom{100)}\underline{\phantom{9}900\phantom{99}}\\\phantom{100)999}1\\\end{array}
Find closest multiple of 100 to 901. We see that 9 \times 100 = 900 is the nearest. Now subtract 900 from 901 to get reminder 1. Add 9 to quotient.
\begin{array}{l}\phantom{100)}0039\phantom{9}\\100\overline{)390101}\\\phantom{100)}\underline{\phantom{}300\phantom{999}}\\\phantom{100)9}901\\\phantom{100)}\underline{\phantom{9}900\phantom{99}}\\\phantom{100)999}10\\\end{array}
Use the 5^{th} digit 0 from dividend 390101
\begin{array}{l}\phantom{100)}00390\phantom{10}\\100\overline{)390101}\\\phantom{100)}\underline{\phantom{}300\phantom{999}}\\\phantom{100)9}901\\\phantom{100)}\underline{\phantom{9}900\phantom{99}}\\\phantom{100)999}10\\\end{array}
Since 10 is less than 100, use the next digit 1 from dividend 390101 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00390\phantom{11}\\100\overline{)390101}\\\phantom{100)}\underline{\phantom{}300\phantom{999}}\\\phantom{100)9}901\\\phantom{100)}\underline{\phantom{9}900\phantom{99}}\\\phantom{100)999}101\\\end{array}
Use the 6^{th} digit 1 from dividend 390101
\begin{array}{l}\phantom{100)}003901\phantom{12}\\100\overline{)390101}\\\phantom{100)}\underline{\phantom{}300\phantom{999}}\\\phantom{100)9}901\\\phantom{100)}\underline{\phantom{9}900\phantom{99}}\\\phantom{100)999}101\\\phantom{100)}\underline{\phantom{999}100\phantom{}}\\\phantom{100)99999}1\\\end{array}
Find closest multiple of 100 to 101. We see that 1 \times 100 = 100 is the nearest. Now subtract 100 from 101 to get reminder 1. Add 1 to quotient.
\text{Quotient: }3901 \text{Reminder: }1
Since 1 is less than 100, stop the division. The reminder is 1. The topmost line 003901 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3901.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}