Evaluate
\frac{38790}{11}\approx 3526.363636364
Factor
\frac{2 \cdot 3 ^ {2} \cdot 5 \cdot 431}{11} = 3526\frac{4}{11} = 3526.3636363636365
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)38790}\\\end{array}
Use the 1^{st} digit 3 from dividend 38790
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)38790}\\\end{array}
Since 3 is less than 11, use the next digit 8 from dividend 38790 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)38790}\\\end{array}
Use the 2^{nd} digit 8 from dividend 38790
\begin{array}{l}\phantom{11)}03\phantom{4}\\11\overline{)38790}\\\phantom{11)}\underline{\phantom{}33\phantom{999}}\\\phantom{11)9}5\\\end{array}
Find closest multiple of 11 to 38. We see that 3 \times 11 = 33 is the nearest. Now subtract 33 from 38 to get reminder 5. Add 3 to quotient.
\begin{array}{l}\phantom{11)}03\phantom{5}\\11\overline{)38790}\\\phantom{11)}\underline{\phantom{}33\phantom{999}}\\\phantom{11)9}57\\\end{array}
Use the 3^{rd} digit 7 from dividend 38790
\begin{array}{l}\phantom{11)}035\phantom{6}\\11\overline{)38790}\\\phantom{11)}\underline{\phantom{}33\phantom{999}}\\\phantom{11)9}57\\\phantom{11)}\underline{\phantom{9}55\phantom{99}}\\\phantom{11)99}2\\\end{array}
Find closest multiple of 11 to 57. We see that 5 \times 11 = 55 is the nearest. Now subtract 55 from 57 to get reminder 2. Add 5 to quotient.
\begin{array}{l}\phantom{11)}035\phantom{7}\\11\overline{)38790}\\\phantom{11)}\underline{\phantom{}33\phantom{999}}\\\phantom{11)9}57\\\phantom{11)}\underline{\phantom{9}55\phantom{99}}\\\phantom{11)99}29\\\end{array}
Use the 4^{th} digit 9 from dividend 38790
\begin{array}{l}\phantom{11)}0352\phantom{8}\\11\overline{)38790}\\\phantom{11)}\underline{\phantom{}33\phantom{999}}\\\phantom{11)9}57\\\phantom{11)}\underline{\phantom{9}55\phantom{99}}\\\phantom{11)99}29\\\phantom{11)}\underline{\phantom{99}22\phantom{9}}\\\phantom{11)999}7\\\end{array}
Find closest multiple of 11 to 29. We see that 2 \times 11 = 22 is the nearest. Now subtract 22 from 29 to get reminder 7. Add 2 to quotient.
\begin{array}{l}\phantom{11)}0352\phantom{9}\\11\overline{)38790}\\\phantom{11)}\underline{\phantom{}33\phantom{999}}\\\phantom{11)9}57\\\phantom{11)}\underline{\phantom{9}55\phantom{99}}\\\phantom{11)99}29\\\phantom{11)}\underline{\phantom{99}22\phantom{9}}\\\phantom{11)999}70\\\end{array}
Use the 5^{th} digit 0 from dividend 38790
\begin{array}{l}\phantom{11)}03526\phantom{10}\\11\overline{)38790}\\\phantom{11)}\underline{\phantom{}33\phantom{999}}\\\phantom{11)9}57\\\phantom{11)}\underline{\phantom{9}55\phantom{99}}\\\phantom{11)99}29\\\phantom{11)}\underline{\phantom{99}22\phantom{9}}\\\phantom{11)999}70\\\phantom{11)}\underline{\phantom{999}66\phantom{}}\\\phantom{11)9999}4\\\end{array}
Find closest multiple of 11 to 70. We see that 6 \times 11 = 66 is the nearest. Now subtract 66 from 70 to get reminder 4. Add 6 to quotient.
\text{Quotient: }3526 \text{Reminder: }4
Since 4 is less than 11, stop the division. The reminder is 4. The topmost line 03526 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3526.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}