Evaluate
\frac{380}{13}\approx 29.230769231
Factor
\frac{2 ^ {2} \cdot 5 \cdot 19}{13} = 29\frac{3}{13} = 29.23076923076923
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)380}\\\end{array}
Use the 1^{st} digit 3 from dividend 380
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)380}\\\end{array}
Since 3 is less than 13, use the next digit 8 from dividend 380 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)380}\\\end{array}
Use the 2^{nd} digit 8 from dividend 380
\begin{array}{l}\phantom{13)}02\phantom{4}\\13\overline{)380}\\\phantom{13)}\underline{\phantom{}26\phantom{9}}\\\phantom{13)}12\\\end{array}
Find closest multiple of 13 to 38. We see that 2 \times 13 = 26 is the nearest. Now subtract 26 from 38 to get reminder 12. Add 2 to quotient.
\begin{array}{l}\phantom{13)}02\phantom{5}\\13\overline{)380}\\\phantom{13)}\underline{\phantom{}26\phantom{9}}\\\phantom{13)}120\\\end{array}
Use the 3^{rd} digit 0 from dividend 380
\begin{array}{l}\phantom{13)}029\phantom{6}\\13\overline{)380}\\\phantom{13)}\underline{\phantom{}26\phantom{9}}\\\phantom{13)}120\\\phantom{13)}\underline{\phantom{}117\phantom{}}\\\phantom{13)99}3\\\end{array}
Find closest multiple of 13 to 120. We see that 9 \times 13 = 117 is the nearest. Now subtract 117 from 120 to get reminder 3. Add 9 to quotient.
\text{Quotient: }29 \text{Reminder: }3
Since 3 is less than 13, stop the division. The reminder is 3. The topmost line 029 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}