Evaluate
\frac{19000\sqrt{391161}}{391161}\approx 30.379164608
Share
Copied to clipboard
\frac{380}{\sqrt{\frac{5.36^{2}}{0.2}+3.58^{2}}}
Add 2.1 and 3.26 to get 5.36.
\frac{380}{\sqrt{\frac{28.7296}{0.2}+3.58^{2}}}
Calculate 5.36 to the power of 2 and get 28.7296.
\frac{380}{\sqrt{\frac{287296}{2000}+3.58^{2}}}
Expand \frac{28.7296}{0.2} by multiplying both numerator and the denominator by 10000.
\frac{380}{\sqrt{\frac{17956}{125}+3.58^{2}}}
Reduce the fraction \frac{287296}{2000} to lowest terms by extracting and canceling out 16.
\frac{380}{\sqrt{\frac{17956}{125}+12.8164}}
Calculate 3.58 to the power of 2 and get 12.8164.
\frac{380}{\sqrt{\frac{391161}{2500}}}
Add \frac{17956}{125} and 12.8164 to get \frac{391161}{2500}.
\frac{380}{\frac{\sqrt{391161}}{\sqrt{2500}}}
Rewrite the square root of the division \sqrt{\frac{391161}{2500}} as the division of square roots \frac{\sqrt{391161}}{\sqrt{2500}}.
\frac{380}{\frac{\sqrt{391161}}{50}}
Calculate the square root of 2500 and get 50.
\frac{380\times 50}{\sqrt{391161}}
Divide 380 by \frac{\sqrt{391161}}{50} by multiplying 380 by the reciprocal of \frac{\sqrt{391161}}{50}.
\frac{380\times 50\sqrt{391161}}{\left(\sqrt{391161}\right)^{2}}
Rationalize the denominator of \frac{380\times 50}{\sqrt{391161}} by multiplying numerator and denominator by \sqrt{391161}.
\frac{380\times 50\sqrt{391161}}{391161}
The square of \sqrt{391161} is 391161.
\frac{19000\sqrt{391161}}{391161}
Multiply 380 and 50 to get 19000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}