Evaluate
\frac{373}{180}\approx 2.072222222
Factor
\frac{373}{2 ^ {2} \cdot 3 ^ {2} \cdot 5} = 2\frac{13}{180} = 2.0722222222222224
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)373}\\\end{array}
Use the 1^{st} digit 3 from dividend 373
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)373}\\\end{array}
Since 3 is less than 180, use the next digit 7 from dividend 373 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)373}\\\end{array}
Use the 2^{nd} digit 7 from dividend 373
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)373}\\\end{array}
Since 37 is less than 180, use the next digit 3 from dividend 373 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)373}\\\end{array}
Use the 3^{rd} digit 3 from dividend 373
\begin{array}{l}\phantom{180)}002\phantom{6}\\180\overline{)373}\\\phantom{180)}\underline{\phantom{}360\phantom{}}\\\phantom{180)9}13\\\end{array}
Find closest multiple of 180 to 373. We see that 2 \times 180 = 360 is the nearest. Now subtract 360 from 373 to get reminder 13. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }13
Since 13 is less than 180, stop the division. The reminder is 13. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}