Evaluate
\frac{369}{19}\approx 19.421052632
Factor
\frac{3 ^ {2} \cdot 41}{19} = 19\frac{8}{19} = 19.42105263157895
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)369}\\\end{array}
Use the 1^{st} digit 3 from dividend 369
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)369}\\\end{array}
Since 3 is less than 19, use the next digit 6 from dividend 369 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)369}\\\end{array}
Use the 2^{nd} digit 6 from dividend 369
\begin{array}{l}\phantom{19)}01\phantom{4}\\19\overline{)369}\\\phantom{19)}\underline{\phantom{}19\phantom{9}}\\\phantom{19)}17\\\end{array}
Find closest multiple of 19 to 36. We see that 1 \times 19 = 19 is the nearest. Now subtract 19 from 36 to get reminder 17. Add 1 to quotient.
\begin{array}{l}\phantom{19)}01\phantom{5}\\19\overline{)369}\\\phantom{19)}\underline{\phantom{}19\phantom{9}}\\\phantom{19)}179\\\end{array}
Use the 3^{rd} digit 9 from dividend 369
\begin{array}{l}\phantom{19)}019\phantom{6}\\19\overline{)369}\\\phantom{19)}\underline{\phantom{}19\phantom{9}}\\\phantom{19)}179\\\phantom{19)}\underline{\phantom{}171\phantom{}}\\\phantom{19)99}8\\\end{array}
Find closest multiple of 19 to 179. We see that 9 \times 19 = 171 is the nearest. Now subtract 171 from 179 to get reminder 8. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }8
Since 8 is less than 19, stop the division. The reminder is 8. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}