Evaluate
\frac{365}{84}\approx 4.345238095
Factor
\frac{5 \cdot 73}{2 ^ {2} \cdot 3 \cdot 7} = 4\frac{29}{84} = 4.345238095238095
Share
Copied to clipboard
\begin{array}{l}\phantom{84)}\phantom{1}\\84\overline{)365}\\\end{array}
Use the 1^{st} digit 3 from dividend 365
\begin{array}{l}\phantom{84)}0\phantom{2}\\84\overline{)365}\\\end{array}
Since 3 is less than 84, use the next digit 6 from dividend 365 and add 0 to the quotient
\begin{array}{l}\phantom{84)}0\phantom{3}\\84\overline{)365}\\\end{array}
Use the 2^{nd} digit 6 from dividend 365
\begin{array}{l}\phantom{84)}00\phantom{4}\\84\overline{)365}\\\end{array}
Since 36 is less than 84, use the next digit 5 from dividend 365 and add 0 to the quotient
\begin{array}{l}\phantom{84)}00\phantom{5}\\84\overline{)365}\\\end{array}
Use the 3^{rd} digit 5 from dividend 365
\begin{array}{l}\phantom{84)}004\phantom{6}\\84\overline{)365}\\\phantom{84)}\underline{\phantom{}336\phantom{}}\\\phantom{84)9}29\\\end{array}
Find closest multiple of 84 to 365. We see that 4 \times 84 = 336 is the nearest. Now subtract 336 from 365 to get reminder 29. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }29
Since 29 is less than 84, stop the division. The reminder is 29. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}