Evaluate
\frac{361}{22}\approx 16.409090909
Factor
\frac{19 ^ {2}}{2 \cdot 11} = 16\frac{9}{22} = 16.40909090909091
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)361}\\\end{array}
Use the 1^{st} digit 3 from dividend 361
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)361}\\\end{array}
Since 3 is less than 22, use the next digit 6 from dividend 361 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)361}\\\end{array}
Use the 2^{nd} digit 6 from dividend 361
\begin{array}{l}\phantom{22)}01\phantom{4}\\22\overline{)361}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}14\\\end{array}
Find closest multiple of 22 to 36. We see that 1 \times 22 = 22 is the nearest. Now subtract 22 from 36 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{22)}01\phantom{5}\\22\overline{)361}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}141\\\end{array}
Use the 3^{rd} digit 1 from dividend 361
\begin{array}{l}\phantom{22)}016\phantom{6}\\22\overline{)361}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}141\\\phantom{22)}\underline{\phantom{}132\phantom{}}\\\phantom{22)99}9\\\end{array}
Find closest multiple of 22 to 141. We see that 6 \times 22 = 132 is the nearest. Now subtract 132 from 141 to get reminder 9. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }9
Since 9 is less than 22, stop the division. The reminder is 9. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}