Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\times 360-\left(x+5\right)\times 360=x\left(x+5\right)\times 48
Variable x cannot be equal to any of the values -5,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+5\right), the least common multiple of x+5,x.
x\times 360-\left(360x+1800\right)=x\left(x+5\right)\times 48
Use the distributive property to multiply x+5 by 360.
x\times 360-360x-1800=x\left(x+5\right)\times 48
To find the opposite of 360x+1800, find the opposite of each term.
-1800=x\left(x+5\right)\times 48
Combine x\times 360 and -360x to get 0.
-1800=\left(x^{2}+5x\right)\times 48
Use the distributive property to multiply x by x+5.
-1800=48x^{2}+240x
Use the distributive property to multiply x^{2}+5x by 48.
48x^{2}+240x=-1800
Swap sides so that all variable terms are on the left hand side.
48x^{2}+240x+1800=0
Add 1800 to both sides.
x=\frac{-240±\sqrt{240^{2}-4\times 48\times 1800}}{2\times 48}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 48 for a, 240 for b, and 1800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-240±\sqrt{57600-4\times 48\times 1800}}{2\times 48}
Square 240.
x=\frac{-240±\sqrt{57600-192\times 1800}}{2\times 48}
Multiply -4 times 48.
x=\frac{-240±\sqrt{57600-345600}}{2\times 48}
Multiply -192 times 1800.
x=\frac{-240±\sqrt{-288000}}{2\times 48}
Add 57600 to -345600.
x=\frac{-240±240\sqrt{5}i}{2\times 48}
Take the square root of -288000.
x=\frac{-240±240\sqrt{5}i}{96}
Multiply 2 times 48.
x=\frac{-240+240\sqrt{5}i}{96}
Now solve the equation x=\frac{-240±240\sqrt{5}i}{96} when ± is plus. Add -240 to 240i\sqrt{5}.
x=\frac{-5+5\sqrt{5}i}{2}
Divide -240+240i\sqrt{5} by 96.
x=\frac{-240\sqrt{5}i-240}{96}
Now solve the equation x=\frac{-240±240\sqrt{5}i}{96} when ± is minus. Subtract 240i\sqrt{5} from -240.
x=\frac{-5\sqrt{5}i-5}{2}
Divide -240-240i\sqrt{5} by 96.
x=\frac{-5+5\sqrt{5}i}{2} x=\frac{-5\sqrt{5}i-5}{2}
The equation is now solved.
x\times 360-\left(x+5\right)\times 360=x\left(x+5\right)\times 48
Variable x cannot be equal to any of the values -5,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+5\right), the least common multiple of x+5,x.
x\times 360-\left(360x+1800\right)=x\left(x+5\right)\times 48
Use the distributive property to multiply x+5 by 360.
x\times 360-360x-1800=x\left(x+5\right)\times 48
To find the opposite of 360x+1800, find the opposite of each term.
-1800=x\left(x+5\right)\times 48
Combine x\times 360 and -360x to get 0.
-1800=\left(x^{2}+5x\right)\times 48
Use the distributive property to multiply x by x+5.
-1800=48x^{2}+240x
Use the distributive property to multiply x^{2}+5x by 48.
48x^{2}+240x=-1800
Swap sides so that all variable terms are on the left hand side.
\frac{48x^{2}+240x}{48}=-\frac{1800}{48}
Divide both sides by 48.
x^{2}+\frac{240}{48}x=-\frac{1800}{48}
Dividing by 48 undoes the multiplication by 48.
x^{2}+5x=-\frac{1800}{48}
Divide 240 by 48.
x^{2}+5x=-\frac{75}{2}
Reduce the fraction \frac{-1800}{48} to lowest terms by extracting and canceling out 24.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-\frac{75}{2}+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=-\frac{75}{2}+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=-\frac{125}{4}
Add -\frac{75}{2} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{2}\right)^{2}=-\frac{125}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{-\frac{125}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{5\sqrt{5}i}{2} x+\frac{5}{2}=-\frac{5\sqrt{5}i}{2}
Simplify.
x=\frac{-5+5\sqrt{5}i}{2} x=\frac{-5\sqrt{5}i-5}{2}
Subtract \frac{5}{2} from both sides of the equation.