Solve for n
n = \frac{3 \sqrt{1601} + 119}{2} \approx 119.518747071
n=\frac{119-3\sqrt{1601}}{2}\approx -0.518747071
Share
Copied to clipboard
\left(n+2\right)\times 360+\left(n-1\right)\times 360=6\left(n-1\right)\left(n+2\right)
Variable n cannot be equal to any of the values -2,1 since division by zero is not defined. Multiply both sides of the equation by \left(n-1\right)\left(n+2\right), the least common multiple of n-1,n+2.
360n+720+\left(n-1\right)\times 360=6\left(n-1\right)\left(n+2\right)
Use the distributive property to multiply n+2 by 360.
360n+720+360n-360=6\left(n-1\right)\left(n+2\right)
Use the distributive property to multiply n-1 by 360.
720n+720-360=6\left(n-1\right)\left(n+2\right)
Combine 360n and 360n to get 720n.
720n+360=6\left(n-1\right)\left(n+2\right)
Subtract 360 from 720 to get 360.
720n+360=\left(6n-6\right)\left(n+2\right)
Use the distributive property to multiply 6 by n-1.
720n+360=6n^{2}+6n-12
Use the distributive property to multiply 6n-6 by n+2 and combine like terms.
720n+360-6n^{2}=6n-12
Subtract 6n^{2} from both sides.
720n+360-6n^{2}-6n=-12
Subtract 6n from both sides.
714n+360-6n^{2}=-12
Combine 720n and -6n to get 714n.
714n+360-6n^{2}+12=0
Add 12 to both sides.
714n+372-6n^{2}=0
Add 360 and 12 to get 372.
-6n^{2}+714n+372=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-714±\sqrt{714^{2}-4\left(-6\right)\times 372}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 714 for b, and 372 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-714±\sqrt{509796-4\left(-6\right)\times 372}}{2\left(-6\right)}
Square 714.
n=\frac{-714±\sqrt{509796+24\times 372}}{2\left(-6\right)}
Multiply -4 times -6.
n=\frac{-714±\sqrt{509796+8928}}{2\left(-6\right)}
Multiply 24 times 372.
n=\frac{-714±\sqrt{518724}}{2\left(-6\right)}
Add 509796 to 8928.
n=\frac{-714±18\sqrt{1601}}{2\left(-6\right)}
Take the square root of 518724.
n=\frac{-714±18\sqrt{1601}}{-12}
Multiply 2 times -6.
n=\frac{18\sqrt{1601}-714}{-12}
Now solve the equation n=\frac{-714±18\sqrt{1601}}{-12} when ± is plus. Add -714 to 18\sqrt{1601}.
n=\frac{119-3\sqrt{1601}}{2}
Divide -714+18\sqrt{1601} by -12.
n=\frac{-18\sqrt{1601}-714}{-12}
Now solve the equation n=\frac{-714±18\sqrt{1601}}{-12} when ± is minus. Subtract 18\sqrt{1601} from -714.
n=\frac{3\sqrt{1601}+119}{2}
Divide -714-18\sqrt{1601} by -12.
n=\frac{119-3\sqrt{1601}}{2} n=\frac{3\sqrt{1601}+119}{2}
The equation is now solved.
\left(n+2\right)\times 360+\left(n-1\right)\times 360=6\left(n-1\right)\left(n+2\right)
Variable n cannot be equal to any of the values -2,1 since division by zero is not defined. Multiply both sides of the equation by \left(n-1\right)\left(n+2\right), the least common multiple of n-1,n+2.
360n+720+\left(n-1\right)\times 360=6\left(n-1\right)\left(n+2\right)
Use the distributive property to multiply n+2 by 360.
360n+720+360n-360=6\left(n-1\right)\left(n+2\right)
Use the distributive property to multiply n-1 by 360.
720n+720-360=6\left(n-1\right)\left(n+2\right)
Combine 360n and 360n to get 720n.
720n+360=6\left(n-1\right)\left(n+2\right)
Subtract 360 from 720 to get 360.
720n+360=\left(6n-6\right)\left(n+2\right)
Use the distributive property to multiply 6 by n-1.
720n+360=6n^{2}+6n-12
Use the distributive property to multiply 6n-6 by n+2 and combine like terms.
720n+360-6n^{2}=6n-12
Subtract 6n^{2} from both sides.
720n+360-6n^{2}-6n=-12
Subtract 6n from both sides.
714n+360-6n^{2}=-12
Combine 720n and -6n to get 714n.
714n-6n^{2}=-12-360
Subtract 360 from both sides.
714n-6n^{2}=-372
Subtract 360 from -12 to get -372.
-6n^{2}+714n=-372
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6n^{2}+714n}{-6}=-\frac{372}{-6}
Divide both sides by -6.
n^{2}+\frac{714}{-6}n=-\frac{372}{-6}
Dividing by -6 undoes the multiplication by -6.
n^{2}-119n=-\frac{372}{-6}
Divide 714 by -6.
n^{2}-119n=62
Divide -372 by -6.
n^{2}-119n+\left(-\frac{119}{2}\right)^{2}=62+\left(-\frac{119}{2}\right)^{2}
Divide -119, the coefficient of the x term, by 2 to get -\frac{119}{2}. Then add the square of -\frac{119}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-119n+\frac{14161}{4}=62+\frac{14161}{4}
Square -\frac{119}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-119n+\frac{14161}{4}=\frac{14409}{4}
Add 62 to \frac{14161}{4}.
\left(n-\frac{119}{2}\right)^{2}=\frac{14409}{4}
Factor n^{2}-119n+\frac{14161}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{119}{2}\right)^{2}}=\sqrt{\frac{14409}{4}}
Take the square root of both sides of the equation.
n-\frac{119}{2}=\frac{3\sqrt{1601}}{2} n-\frac{119}{2}=-\frac{3\sqrt{1601}}{2}
Simplify.
n=\frac{3\sqrt{1601}+119}{2} n=\frac{119-3\sqrt{1601}}{2}
Add \frac{119}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}