Evaluate
\frac{360}{23}\approx 15.652173913
Factor
\frac{2 ^ {3} \cdot 3 ^ {2} \cdot 5}{23} = 15\frac{15}{23} = 15.652173913043478
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)360}\\\end{array}
Use the 1^{st} digit 3 from dividend 360
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)360}\\\end{array}
Since 3 is less than 23, use the next digit 6 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)360}\\\end{array}
Use the 2^{nd} digit 6 from dividend 360
\begin{array}{l}\phantom{23)}01\phantom{4}\\23\overline{)360}\\\phantom{23)}\underline{\phantom{}23\phantom{9}}\\\phantom{23)}13\\\end{array}
Find closest multiple of 23 to 36. We see that 1 \times 23 = 23 is the nearest. Now subtract 23 from 36 to get reminder 13. Add 1 to quotient.
\begin{array}{l}\phantom{23)}01\phantom{5}\\23\overline{)360}\\\phantom{23)}\underline{\phantom{}23\phantom{9}}\\\phantom{23)}130\\\end{array}
Use the 3^{rd} digit 0 from dividend 360
\begin{array}{l}\phantom{23)}015\phantom{6}\\23\overline{)360}\\\phantom{23)}\underline{\phantom{}23\phantom{9}}\\\phantom{23)}130\\\phantom{23)}\underline{\phantom{}115\phantom{}}\\\phantom{23)9}15\\\end{array}
Find closest multiple of 23 to 130. We see that 5 \times 23 = 115 is the nearest. Now subtract 115 from 130 to get reminder 15. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }15
Since 15 is less than 23, stop the division. The reminder is 15. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}