Solve for x
x=-30
x=36
Graph
Share
Copied to clipboard
5x\times 36-\left(5x-30\right)\times 36=x\left(x-6\right)
Variable x cannot be equal to any of the values 0,6 since division by zero is not defined. Multiply both sides of the equation by 5x\left(x-6\right), the least common multiple of x-6,x,5.
180x-\left(5x-30\right)\times 36=x\left(x-6\right)
Multiply 5 and 36 to get 180.
180x-\left(180x-1080\right)=x\left(x-6\right)
Use the distributive property to multiply 5x-30 by 36.
180x-180x+1080=x\left(x-6\right)
To find the opposite of 180x-1080, find the opposite of each term.
1080=x\left(x-6\right)
Combine 180x and -180x to get 0.
1080=x^{2}-6x
Use the distributive property to multiply x by x-6.
x^{2}-6x=1080
Swap sides so that all variable terms are on the left hand side.
x^{2}-6x-1080=0
Subtract 1080 from both sides.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1080\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and -1080 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1080\right)}}{2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+4320}}{2}
Multiply -4 times -1080.
x=\frac{-\left(-6\right)±\sqrt{4356}}{2}
Add 36 to 4320.
x=\frac{-\left(-6\right)±66}{2}
Take the square root of 4356.
x=\frac{6±66}{2}
The opposite of -6 is 6.
x=\frac{72}{2}
Now solve the equation x=\frac{6±66}{2} when ± is plus. Add 6 to 66.
x=36
Divide 72 by 2.
x=-\frac{60}{2}
Now solve the equation x=\frac{6±66}{2} when ± is minus. Subtract 66 from 6.
x=-30
Divide -60 by 2.
x=36 x=-30
The equation is now solved.
5x\times 36-\left(5x-30\right)\times 36=x\left(x-6\right)
Variable x cannot be equal to any of the values 0,6 since division by zero is not defined. Multiply both sides of the equation by 5x\left(x-6\right), the least common multiple of x-6,x,5.
180x-\left(5x-30\right)\times 36=x\left(x-6\right)
Multiply 5 and 36 to get 180.
180x-\left(180x-1080\right)=x\left(x-6\right)
Use the distributive property to multiply 5x-30 by 36.
180x-180x+1080=x\left(x-6\right)
To find the opposite of 180x-1080, find the opposite of each term.
1080=x\left(x-6\right)
Combine 180x and -180x to get 0.
1080=x^{2}-6x
Use the distributive property to multiply x by x-6.
x^{2}-6x=1080
Swap sides so that all variable terms are on the left hand side.
x^{2}-6x+\left(-3\right)^{2}=1080+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=1080+9
Square -3.
x^{2}-6x+9=1089
Add 1080 to 9.
\left(x-3\right)^{2}=1089
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{1089}
Take the square root of both sides of the equation.
x-3=33 x-3=-33
Simplify.
x=36 x=-30
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}