Solve for a
a = -\frac{36}{25} = -1\frac{11}{25} = -1.44
Share
Copied to clipboard
\frac{36}{5}=-\frac{144}{25}+\frac{72}{5}+a
Calculate \frac{12}{5} to the power of 2 and get \frac{144}{25}.
\frac{36}{5}=-\frac{144}{25}+\frac{360}{25}+a
Least common multiple of 25 and 5 is 25. Convert -\frac{144}{25} and \frac{72}{5} to fractions with denominator 25.
\frac{36}{5}=\frac{-144+360}{25}+a
Since -\frac{144}{25} and \frac{360}{25} have the same denominator, add them by adding their numerators.
\frac{36}{5}=\frac{216}{25}+a
Add -144 and 360 to get 216.
\frac{216}{25}+a=\frac{36}{5}
Swap sides so that all variable terms are on the left hand side.
a=\frac{36}{5}-\frac{216}{25}
Subtract \frac{216}{25} from both sides.
a=\frac{180}{25}-\frac{216}{25}
Least common multiple of 5 and 25 is 25. Convert \frac{36}{5} and \frac{216}{25} to fractions with denominator 25.
a=\frac{180-216}{25}
Since \frac{180}{25} and \frac{216}{25} have the same denominator, subtract them by subtracting their numerators.
a=-\frac{36}{25}
Subtract 216 from 180 to get -36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}