Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{36}{5}}{-\frac{6}{5}}+\sqrt{\frac{27}{16}}-\frac{1}{8}-\frac{13}{4}
Calculate -\frac{5}{6} to the power of -1 and get -\frac{6}{5}.
\frac{36}{5}\left(-\frac{5}{6}\right)+\sqrt{\frac{27}{16}}-\frac{1}{8}-\frac{13}{4}
Divide \frac{36}{5} by -\frac{6}{5} by multiplying \frac{36}{5} by the reciprocal of -\frac{6}{5}.
-6+\sqrt{\frac{27}{16}}-\frac{1}{8}-\frac{13}{4}
Multiply \frac{36}{5} and -\frac{5}{6} to get -6.
-6+\frac{\sqrt{27}}{\sqrt{16}}-\frac{1}{8}-\frac{13}{4}
Rewrite the square root of the division \sqrt{\frac{27}{16}} as the division of square roots \frac{\sqrt{27}}{\sqrt{16}}.
-6+\frac{3\sqrt{3}}{\sqrt{16}}-\frac{1}{8}-\frac{13}{4}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
-6+\frac{3\sqrt{3}}{4}-\frac{1}{8}-\frac{13}{4}
Calculate the square root of 16 and get 4.
-\frac{49}{8}+\frac{3\sqrt{3}}{4}-\frac{13}{4}
Subtract \frac{1}{8} from -6 to get -\frac{49}{8}.
-\frac{75}{8}+\frac{3\sqrt{3}}{4}
Subtract \frac{13}{4} from -\frac{49}{8} to get -\frac{75}{8}.
-\frac{75}{8}+\frac{2\times 3\sqrt{3}}{8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8 and 4 is 8. Multiply \frac{3\sqrt{3}}{4} times \frac{2}{2}.
\frac{-75+2\times 3\sqrt{3}}{8}
Since -\frac{75}{8} and \frac{2\times 3\sqrt{3}}{8} have the same denominator, add them by adding their numerators.
\frac{-75+6\sqrt{3}}{8}
Do the multiplications in -75+2\times 3\sqrt{3}.