Evaluate
\frac{355}{113}\approx 3.14159292
Factor
\frac{5 \cdot 71}{113} = 3\frac{16}{113} = 3.1415929203539825
Share
Copied to clipboard
\begin{array}{l}\phantom{113)}\phantom{1}\\113\overline{)355}\\\end{array}
Use the 1^{st} digit 3 from dividend 355
\begin{array}{l}\phantom{113)}0\phantom{2}\\113\overline{)355}\\\end{array}
Since 3 is less than 113, use the next digit 5 from dividend 355 and add 0 to the quotient
\begin{array}{l}\phantom{113)}0\phantom{3}\\113\overline{)355}\\\end{array}
Use the 2^{nd} digit 5 from dividend 355
\begin{array}{l}\phantom{113)}00\phantom{4}\\113\overline{)355}\\\end{array}
Since 35 is less than 113, use the next digit 5 from dividend 355 and add 0 to the quotient
\begin{array}{l}\phantom{113)}00\phantom{5}\\113\overline{)355}\\\end{array}
Use the 3^{rd} digit 5 from dividend 355
\begin{array}{l}\phantom{113)}003\phantom{6}\\113\overline{)355}\\\phantom{113)}\underline{\phantom{}339\phantom{}}\\\phantom{113)9}16\\\end{array}
Find closest multiple of 113 to 355. We see that 3 \times 113 = 339 is the nearest. Now subtract 339 from 355 to get reminder 16. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }16
Since 16 is less than 113, stop the division. The reminder is 16. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}