Evaluate
\frac{177}{35}\approx 5.057142857
Factor
\frac{3 \cdot 59}{5 \cdot 7} = 5\frac{2}{35} = 5.057142857142857
Share
Copied to clipboard
\begin{array}{l}\phantom{70)}\phantom{1}\\70\overline{)354}\\\end{array}
Use the 1^{st} digit 3 from dividend 354
\begin{array}{l}\phantom{70)}0\phantom{2}\\70\overline{)354}\\\end{array}
Since 3 is less than 70, use the next digit 5 from dividend 354 and add 0 to the quotient
\begin{array}{l}\phantom{70)}0\phantom{3}\\70\overline{)354}\\\end{array}
Use the 2^{nd} digit 5 from dividend 354
\begin{array}{l}\phantom{70)}00\phantom{4}\\70\overline{)354}\\\end{array}
Since 35 is less than 70, use the next digit 4 from dividend 354 and add 0 to the quotient
\begin{array}{l}\phantom{70)}00\phantom{5}\\70\overline{)354}\\\end{array}
Use the 3^{rd} digit 4 from dividend 354
\begin{array}{l}\phantom{70)}005\phantom{6}\\70\overline{)354}\\\phantom{70)}\underline{\phantom{}350\phantom{}}\\\phantom{70)99}4\\\end{array}
Find closest multiple of 70 to 354. We see that 5 \times 70 = 350 is the nearest. Now subtract 350 from 354 to get reminder 4. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }4
Since 4 is less than 70, stop the division. The reminder is 4. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}