\frac { 35 m } { 1 m } = \frac { ? } { 100 c m }
Solve for c
c=\frac{1}{3500m}
m\neq 0
Solve for m
m=\frac{1}{3500c}
c\neq 0
Share
Copied to clipboard
100c\times 35m=1
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 100cm, the least common multiple of 1m,100cm.
3500cm=1
Multiply 100 and 35 to get 3500.
3500mc=1
The equation is in standard form.
\frac{3500mc}{3500m}=\frac{1}{3500m}
Divide both sides by 3500m.
c=\frac{1}{3500m}
Dividing by 3500m undoes the multiplication by 3500m.
c=\frac{1}{3500m}\text{, }c\neq 0
Variable c cannot be equal to 0.
100c\times 35m=1
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 100cm, the least common multiple of 1m,100cm.
3500cm=1
Multiply 100 and 35 to get 3500.
\frac{3500cm}{3500c}=\frac{1}{3500c}
Divide both sides by 3500c.
m=\frac{1}{3500c}
Dividing by 3500c undoes the multiplication by 3500c.
m=\frac{1}{3500c}\text{, }m\neq 0
Variable m cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}