Evaluate
\frac{115}{8}=14.375
Factor
\frac{5 \cdot 23}{2 ^ {3}} = 14\frac{3}{8} = 14.375
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)345}\\\end{array}
Use the 1^{st} digit 3 from dividend 345
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)345}\\\end{array}
Since 3 is less than 24, use the next digit 4 from dividend 345 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)345}\\\end{array}
Use the 2^{nd} digit 4 from dividend 345
\begin{array}{l}\phantom{24)}01\phantom{4}\\24\overline{)345}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}10\\\end{array}
Find closest multiple of 24 to 34. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 34 to get reminder 10. Add 1 to quotient.
\begin{array}{l}\phantom{24)}01\phantom{5}\\24\overline{)345}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}105\\\end{array}
Use the 3^{rd} digit 5 from dividend 345
\begin{array}{l}\phantom{24)}014\phantom{6}\\24\overline{)345}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}105\\\phantom{24)}\underline{\phantom{9}96\phantom{}}\\\phantom{24)99}9\\\end{array}
Find closest multiple of 24 to 105. We see that 4 \times 24 = 96 is the nearest. Now subtract 96 from 105 to get reminder 9. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }9
Since 9 is less than 24, stop the division. The reminder is 9. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}