Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(343n-175\right)\left(n^{2}-7n+10\right)}{\left(7n^{2}-19n+10\right)\left(35n^{2}+4n-15\right)}
Divide \frac{343n-175}{7n^{2}-19n+10} by \frac{35n^{2}+4n-15}{n^{2}-7n+10} by multiplying \frac{343n-175}{7n^{2}-19n+10} by the reciprocal of \frac{35n^{2}+4n-15}{n^{2}-7n+10}.
\frac{7\left(n-5\right)\left(n-2\right)\left(49n-25\right)}{\left(n-2\right)\left(5n-3\right)\left(7n-5\right)\left(7n+5\right)}
Factor the expressions that are not already factored.
\frac{7\left(n-5\right)\left(49n-25\right)}{\left(5n-3\right)\left(7n-5\right)\left(7n+5\right)}
Cancel out n-2 in both numerator and denominator.
\frac{343n^{2}-1890n+875}{245n^{3}-147n^{2}-125n+75}
Expand the expression.
\frac{\left(343n-175\right)\left(n^{2}-7n+10\right)}{\left(7n^{2}-19n+10\right)\left(35n^{2}+4n-15\right)}
Divide \frac{343n-175}{7n^{2}-19n+10} by \frac{35n^{2}+4n-15}{n^{2}-7n+10} by multiplying \frac{343n-175}{7n^{2}-19n+10} by the reciprocal of \frac{35n^{2}+4n-15}{n^{2}-7n+10}.
\frac{7\left(n-5\right)\left(n-2\right)\left(49n-25\right)}{\left(n-2\right)\left(5n-3\right)\left(7n-5\right)\left(7n+5\right)}
Factor the expressions that are not already factored.
\frac{7\left(n-5\right)\left(49n-25\right)}{\left(5n-3\right)\left(7n-5\right)\left(7n+5\right)}
Cancel out n-2 in both numerator and denominator.
\frac{343n^{2}-1890n+875}{245n^{3}-147n^{2}-125n+75}
Expand the expression.