Evaluate
\frac{341}{47}\approx 7.255319149
Factor
\frac{11 \cdot 31}{47} = 7\frac{12}{47} = 7.25531914893617
Share
Copied to clipboard
\begin{array}{l}\phantom{47)}\phantom{1}\\47\overline{)341}\\\end{array}
Use the 1^{st} digit 3 from dividend 341
\begin{array}{l}\phantom{47)}0\phantom{2}\\47\overline{)341}\\\end{array}
Since 3 is less than 47, use the next digit 4 from dividend 341 and add 0 to the quotient
\begin{array}{l}\phantom{47)}0\phantom{3}\\47\overline{)341}\\\end{array}
Use the 2^{nd} digit 4 from dividend 341
\begin{array}{l}\phantom{47)}00\phantom{4}\\47\overline{)341}\\\end{array}
Since 34 is less than 47, use the next digit 1 from dividend 341 and add 0 to the quotient
\begin{array}{l}\phantom{47)}00\phantom{5}\\47\overline{)341}\\\end{array}
Use the 3^{rd} digit 1 from dividend 341
\begin{array}{l}\phantom{47)}007\phantom{6}\\47\overline{)341}\\\phantom{47)}\underline{\phantom{}329\phantom{}}\\\phantom{47)9}12\\\end{array}
Find closest multiple of 47 to 341. We see that 7 \times 47 = 329 is the nearest. Now subtract 329 from 341 to get reminder 12. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }12
Since 12 is less than 47, stop the division. The reminder is 12. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}