Solve for x
x=\frac{\sqrt{178}}{34}+\frac{6}{17}\approx 0.745343061
x=-\frac{\sqrt{178}}{34}+\frac{6}{17}\approx -0.039460708
Graph
Share
Copied to clipboard
34x^{2}-24x-1=0
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right).
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 34\left(-1\right)}}{2\times 34}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 34 for a, -24 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 34\left(-1\right)}}{2\times 34}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-136\left(-1\right)}}{2\times 34}
Multiply -4 times 34.
x=\frac{-\left(-24\right)±\sqrt{576+136}}{2\times 34}
Multiply -136 times -1.
x=\frac{-\left(-24\right)±\sqrt{712}}{2\times 34}
Add 576 to 136.
x=\frac{-\left(-24\right)±2\sqrt{178}}{2\times 34}
Take the square root of 712.
x=\frac{24±2\sqrt{178}}{2\times 34}
The opposite of -24 is 24.
x=\frac{24±2\sqrt{178}}{68}
Multiply 2 times 34.
x=\frac{2\sqrt{178}+24}{68}
Now solve the equation x=\frac{24±2\sqrt{178}}{68} when ± is plus. Add 24 to 2\sqrt{178}.
x=\frac{\sqrt{178}}{34}+\frac{6}{17}
Divide 24+2\sqrt{178} by 68.
x=\frac{24-2\sqrt{178}}{68}
Now solve the equation x=\frac{24±2\sqrt{178}}{68} when ± is minus. Subtract 2\sqrt{178} from 24.
x=-\frac{\sqrt{178}}{34}+\frac{6}{17}
Divide 24-2\sqrt{178} by 68.
x=\frac{\sqrt{178}}{34}+\frac{6}{17} x=-\frac{\sqrt{178}}{34}+\frac{6}{17}
The equation is now solved.
34x^{2}-24x-1=0
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right).
34x^{2}-24x=1
Add 1 to both sides. Anything plus zero gives itself.
\frac{34x^{2}-24x}{34}=\frac{1}{34}
Divide both sides by 34.
x^{2}+\left(-\frac{24}{34}\right)x=\frac{1}{34}
Dividing by 34 undoes the multiplication by 34.
x^{2}-\frac{12}{17}x=\frac{1}{34}
Reduce the fraction \frac{-24}{34} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{12}{17}x+\left(-\frac{6}{17}\right)^{2}=\frac{1}{34}+\left(-\frac{6}{17}\right)^{2}
Divide -\frac{12}{17}, the coefficient of the x term, by 2 to get -\frac{6}{17}. Then add the square of -\frac{6}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{12}{17}x+\frac{36}{289}=\frac{1}{34}+\frac{36}{289}
Square -\frac{6}{17} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{12}{17}x+\frac{36}{289}=\frac{89}{578}
Add \frac{1}{34} to \frac{36}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{6}{17}\right)^{2}=\frac{89}{578}
Factor x^{2}-\frac{12}{17}x+\frac{36}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{6}{17}\right)^{2}}=\sqrt{\frac{89}{578}}
Take the square root of both sides of the equation.
x-\frac{6}{17}=\frac{\sqrt{178}}{34} x-\frac{6}{17}=-\frac{\sqrt{178}}{34}
Simplify.
x=\frac{\sqrt{178}}{34}+\frac{6}{17} x=-\frac{\sqrt{178}}{34}+\frac{6}{17}
Add \frac{6}{17} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}