Evaluate
66-33\sqrt{3}\approx 8.84232335
Share
Copied to clipboard
\frac{34\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{1}{2-\sqrt{5}}
Rationalize the denominator of \frac{34}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\frac{34\left(2-\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}+\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{1}{2-\sqrt{5}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{34\left(2-\sqrt{3}\right)}{4-3}+\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{1}{2-\sqrt{5}}
Square 2. Square \sqrt{3}.
\frac{34\left(2-\sqrt{3}\right)}{1}+\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{1}{2-\sqrt{5}}
Subtract 3 from 4 to get 1.
34\left(2-\sqrt{3}\right)+\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{1}{2-\sqrt{5}}
Anything divided by one gives itself.
34\left(2-\sqrt{3}\right)+\frac{2\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\frac{1}{2-\sqrt{5}}
Rationalize the denominator of \frac{2}{\sqrt{5}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{3}.
34\left(2-\sqrt{3}\right)+\frac{2\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{1}{2-\sqrt{5}}
Consider \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
34\left(2-\sqrt{3}\right)+\frac{2\left(\sqrt{5}+\sqrt{3}\right)}{5-3}+\frac{1}{2-\sqrt{5}}
Square \sqrt{5}. Square \sqrt{3}.
34\left(2-\sqrt{3}\right)+\frac{2\left(\sqrt{5}+\sqrt{3}\right)}{2}+\frac{1}{2-\sqrt{5}}
Subtract 3 from 5 to get 2.
34\left(2-\sqrt{3}\right)+\sqrt{5}+\sqrt{3}+\frac{1}{2-\sqrt{5}}
Cancel out 2 and 2.
34\left(2-\sqrt{3}\right)+\sqrt{5}+\sqrt{3}+\frac{2+\sqrt{5}}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}
Rationalize the denominator of \frac{1}{2-\sqrt{5}} by multiplying numerator and denominator by 2+\sqrt{5}.
34\left(2-\sqrt{3}\right)+\sqrt{5}+\sqrt{3}+\frac{2+\sqrt{5}}{2^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
34\left(2-\sqrt{3}\right)+\sqrt{5}+\sqrt{3}+\frac{2+\sqrt{5}}{4-5}
Square 2. Square \sqrt{5}.
34\left(2-\sqrt{3}\right)+\sqrt{5}+\sqrt{3}+\frac{2+\sqrt{5}}{-1}
Subtract 5 from 4 to get -1.
34\left(2-\sqrt{3}\right)+\sqrt{5}+\sqrt{3}-2-\sqrt{5}
Anything divided by -1 gives its opposite. To find the opposite of 2+\sqrt{5}, find the opposite of each term.
34\left(2-\sqrt{3}\right)+\sqrt{3}-2
Combine \sqrt{5} and -\sqrt{5} to get 0.
68-34\sqrt{3}+\sqrt{3}-2
Use the distributive property to multiply 34 by 2-\sqrt{3}.
68-33\sqrt{3}-2
Combine -34\sqrt{3} and \sqrt{3} to get -33\sqrt{3}.
66-33\sqrt{3}
Subtract 2 from 68 to get 66.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}