Evaluate
\frac{335}{36}\approx 9.305555556
Factor
\frac{5 \cdot 67}{2 ^ {2} \cdot 3 ^ {2}} = 9\frac{11}{36} = 9.305555555555555
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)335}\\\end{array}
Use the 1^{st} digit 3 from dividend 335
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)335}\\\end{array}
Since 3 is less than 36, use the next digit 3 from dividend 335 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)335}\\\end{array}
Use the 2^{nd} digit 3 from dividend 335
\begin{array}{l}\phantom{36)}00\phantom{4}\\36\overline{)335}\\\end{array}
Since 33 is less than 36, use the next digit 5 from dividend 335 and add 0 to the quotient
\begin{array}{l}\phantom{36)}00\phantom{5}\\36\overline{)335}\\\end{array}
Use the 3^{rd} digit 5 from dividend 335
\begin{array}{l}\phantom{36)}009\phantom{6}\\36\overline{)335}\\\phantom{36)}\underline{\phantom{}324\phantom{}}\\\phantom{36)9}11\\\end{array}
Find closest multiple of 36 to 335. We see that 9 \times 36 = 324 is the nearest. Now subtract 324 from 335 to get reminder 11. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }11
Since 11 is less than 36, stop the division. The reminder is 11. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}