Evaluate
\frac{335}{27}\approx 12.407407407
Factor
\frac{5 \cdot 67}{3 ^ {3}} = 12\frac{11}{27} = 12.407407407407407
Share
Copied to clipboard
\begin{array}{l}\phantom{27)}\phantom{1}\\27\overline{)335}\\\end{array}
Use the 1^{st} digit 3 from dividend 335
\begin{array}{l}\phantom{27)}0\phantom{2}\\27\overline{)335}\\\end{array}
Since 3 is less than 27, use the next digit 3 from dividend 335 and add 0 to the quotient
\begin{array}{l}\phantom{27)}0\phantom{3}\\27\overline{)335}\\\end{array}
Use the 2^{nd} digit 3 from dividend 335
\begin{array}{l}\phantom{27)}01\phantom{4}\\27\overline{)335}\\\phantom{27)}\underline{\phantom{}27\phantom{9}}\\\phantom{27)9}6\\\end{array}
Find closest multiple of 27 to 33. We see that 1 \times 27 = 27 is the nearest. Now subtract 27 from 33 to get reminder 6. Add 1 to quotient.
\begin{array}{l}\phantom{27)}01\phantom{5}\\27\overline{)335}\\\phantom{27)}\underline{\phantom{}27\phantom{9}}\\\phantom{27)9}65\\\end{array}
Use the 3^{rd} digit 5 from dividend 335
\begin{array}{l}\phantom{27)}012\phantom{6}\\27\overline{)335}\\\phantom{27)}\underline{\phantom{}27\phantom{9}}\\\phantom{27)9}65\\\phantom{27)}\underline{\phantom{9}54\phantom{}}\\\phantom{27)9}11\\\end{array}
Find closest multiple of 27 to 65. We see that 2 \times 27 = 54 is the nearest. Now subtract 54 from 65 to get reminder 11. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }11
Since 11 is less than 27, stop the division. The reminder is 11. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}