Evaluate
\frac{334}{99}\approx 3.373737374
Factor
\frac{2 \cdot 167}{3 ^ {2} \cdot 11} = 3\frac{37}{99} = 3.3737373737373737
Share
Copied to clipboard
\begin{array}{l}\phantom{99)}\phantom{1}\\99\overline{)334}\\\end{array}
Use the 1^{st} digit 3 from dividend 334
\begin{array}{l}\phantom{99)}0\phantom{2}\\99\overline{)334}\\\end{array}
Since 3 is less than 99, use the next digit 3 from dividend 334 and add 0 to the quotient
\begin{array}{l}\phantom{99)}0\phantom{3}\\99\overline{)334}\\\end{array}
Use the 2^{nd} digit 3 from dividend 334
\begin{array}{l}\phantom{99)}00\phantom{4}\\99\overline{)334}\\\end{array}
Since 33 is less than 99, use the next digit 4 from dividend 334 and add 0 to the quotient
\begin{array}{l}\phantom{99)}00\phantom{5}\\99\overline{)334}\\\end{array}
Use the 3^{rd} digit 4 from dividend 334
\begin{array}{l}\phantom{99)}003\phantom{6}\\99\overline{)334}\\\phantom{99)}\underline{\phantom{}297\phantom{}}\\\phantom{99)9}37\\\end{array}
Find closest multiple of 99 to 334. We see that 3 \times 99 = 297 is the nearest. Now subtract 297 from 334 to get reminder 37. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }37
Since 37 is less than 99, stop the division. The reminder is 37. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}