Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(33-i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+i.
\frac{\left(33-i\right)\left(3+i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(33-i\right)\left(3+i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{33\times 3+33i-i\times 3-i^{2}}{10}
Multiply complex numbers 33-i and 3+i like you multiply binomials.
\frac{33\times 3+33i-i\times 3-\left(-1\right)}{10}
By definition, i^{2} is -1.
\frac{99+33i-3i+1}{10}
Do the multiplications in 33\times 3+33i-i\times 3-\left(-1\right).
\frac{99+1+\left(33-3\right)i}{10}
Combine the real and imaginary parts in 99+33i-3i+1.
\frac{100+30i}{10}
Do the additions in 99+1+\left(33-3\right)i.
10+3i
Divide 100+30i by 10 to get 10+3i.
Re(\frac{\left(33-i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)})
Multiply both numerator and denominator of \frac{33-i}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{\left(33-i\right)\left(3+i\right)}{3^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(33-i\right)\left(3+i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{33\times 3+33i-i\times 3-i^{2}}{10})
Multiply complex numbers 33-i and 3+i like you multiply binomials.
Re(\frac{33\times 3+33i-i\times 3-\left(-1\right)}{10})
By definition, i^{2} is -1.
Re(\frac{99+33i-3i+1}{10})
Do the multiplications in 33\times 3+33i-i\times 3-\left(-1\right).
Re(\frac{99+1+\left(33-3\right)i}{10})
Combine the real and imaginary parts in 99+33i-3i+1.
Re(\frac{100+30i}{10})
Do the additions in 99+1+\left(33-3\right)i.
Re(10+3i)
Divide 100+30i by 10 to get 10+3i.
10
The real part of 10+3i is 10.