Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{33}{8}x^{2}+\left(5x-8y\right)\left(\frac{5}{4}x+2y\right)-\left(5xy+\left(\frac{5}{4}x-2y\right)^{2}-24y^{2}\right)-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Use the distributive property to multiply 4 by \frac{5}{4}x-2y.
\frac{33}{8}x^{2}+\frac{25}{4}x^{2}-16y^{2}-\left(5xy+\left(\frac{5}{4}x-2y\right)^{2}-24y^{2}\right)-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Use the distributive property to multiply 5x-8y by \frac{5}{4}x+2y and combine like terms.
\frac{83}{8}x^{2}-16y^{2}-\left(5xy+\left(\frac{5}{4}x-2y\right)^{2}-24y^{2}\right)-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Combine \frac{33}{8}x^{2} and \frac{25}{4}x^{2} to get \frac{83}{8}x^{2}.
\frac{83}{8}x^{2}-16y^{2}-\left(5xy+\frac{25}{16}x^{2}-5xy+4y^{2}-24y^{2}\right)-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{5}{4}x-2y\right)^{2}.
\frac{83}{8}x^{2}-16y^{2}-\left(\frac{25}{16}x^{2}+4y^{2}-24y^{2}\right)-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Combine 5xy and -5xy to get 0.
\frac{83}{8}x^{2}-16y^{2}-\left(\frac{25}{16}x^{2}-20y^{2}\right)-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Combine 4y^{2} and -24y^{2} to get -20y^{2}.
\frac{83}{8}x^{2}-16y^{2}-\frac{25}{16}x^{2}+20y^{2}-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
To find the opposite of \frac{25}{16}x^{2}-20y^{2}, find the opposite of each term.
\frac{141}{16}x^{2}-16y^{2}+20y^{2}-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Combine \frac{83}{8}x^{2} and -\frac{25}{16}x^{2} to get \frac{141}{16}x^{2}.
\frac{141}{16}x^{2}+4y^{2}-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Combine -16y^{2} and 20y^{2} to get 4y^{2}.
\frac{141}{16}x^{2}+4y^{2}-\left(\left(\frac{3}{4}\right)^{2}x^{2}+4y\left(y-1\right)\right)
Expand \left(\frac{3}{4}x\right)^{2}.
\frac{141}{16}x^{2}+4y^{2}-\left(\frac{9}{16}x^{2}+4y\left(y-1\right)\right)
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
\frac{141}{16}x^{2}+4y^{2}-\left(\frac{9}{16}x^{2}+4y^{2}-4y\right)
Use the distributive property to multiply 4y by y-1.
\frac{141}{16}x^{2}+4y^{2}-\frac{9}{16}x^{2}-4y^{2}+4y
To find the opposite of \frac{9}{16}x^{2}+4y^{2}-4y, find the opposite of each term.
\frac{33}{4}x^{2}+4y^{2}-4y^{2}+4y
Combine \frac{141}{16}x^{2} and -\frac{9}{16}x^{2} to get \frac{33}{4}x^{2}.
\frac{33}{4}x^{2}+4y
Combine 4y^{2} and -4y^{2} to get 0.
\frac{33}{8}x^{2}+\left(5x-8y\right)\left(\frac{5}{4}x+2y\right)-\left(5xy+\left(\frac{5}{4}x-2y\right)^{2}-24y^{2}\right)-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Use the distributive property to multiply 4 by \frac{5}{4}x-2y.
\frac{33}{8}x^{2}+\frac{25}{4}x^{2}-16y^{2}-\left(5xy+\left(\frac{5}{4}x-2y\right)^{2}-24y^{2}\right)-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Use the distributive property to multiply 5x-8y by \frac{5}{4}x+2y and combine like terms.
\frac{83}{8}x^{2}-16y^{2}-\left(5xy+\left(\frac{5}{4}x-2y\right)^{2}-24y^{2}\right)-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Combine \frac{33}{8}x^{2} and \frac{25}{4}x^{2} to get \frac{83}{8}x^{2}.
\frac{83}{8}x^{2}-16y^{2}-\left(5xy+\frac{25}{16}x^{2}-5xy+4y^{2}-24y^{2}\right)-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{5}{4}x-2y\right)^{2}.
\frac{83}{8}x^{2}-16y^{2}-\left(\frac{25}{16}x^{2}+4y^{2}-24y^{2}\right)-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Combine 5xy and -5xy to get 0.
\frac{83}{8}x^{2}-16y^{2}-\left(\frac{25}{16}x^{2}-20y^{2}\right)-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Combine 4y^{2} and -24y^{2} to get -20y^{2}.
\frac{83}{8}x^{2}-16y^{2}-\frac{25}{16}x^{2}+20y^{2}-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
To find the opposite of \frac{25}{16}x^{2}-20y^{2}, find the opposite of each term.
\frac{141}{16}x^{2}-16y^{2}+20y^{2}-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Combine \frac{83}{8}x^{2} and -\frac{25}{16}x^{2} to get \frac{141}{16}x^{2}.
\frac{141}{16}x^{2}+4y^{2}-\left(\left(\frac{3}{4}x\right)^{2}+4y\left(y-1\right)\right)
Combine -16y^{2} and 20y^{2} to get 4y^{2}.
\frac{141}{16}x^{2}+4y^{2}-\left(\left(\frac{3}{4}\right)^{2}x^{2}+4y\left(y-1\right)\right)
Expand \left(\frac{3}{4}x\right)^{2}.
\frac{141}{16}x^{2}+4y^{2}-\left(\frac{9}{16}x^{2}+4y\left(y-1\right)\right)
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
\frac{141}{16}x^{2}+4y^{2}-\left(\frac{9}{16}x^{2}+4y^{2}-4y\right)
Use the distributive property to multiply 4y by y-1.
\frac{141}{16}x^{2}+4y^{2}-\frac{9}{16}x^{2}-4y^{2}+4y
To find the opposite of \frac{9}{16}x^{2}+4y^{2}-4y, find the opposite of each term.
\frac{33}{4}x^{2}+4y^{2}-4y^{2}+4y
Combine \frac{141}{16}x^{2} and -\frac{9}{16}x^{2} to get \frac{33}{4}x^{2}.
\frac{33}{4}x^{2}+4y
Combine 4y^{2} and -4y^{2} to get 0.