Evaluate
\frac{324}{61}\approx 5.31147541
Factor
\frac{2 ^ {2} \cdot 3 ^ {4}}{61} = 5\frac{19}{61} = 5.311475409836065
Share
Copied to clipboard
\begin{array}{l}\phantom{61)}\phantom{1}\\61\overline{)324}\\\end{array}
Use the 1^{st} digit 3 from dividend 324
\begin{array}{l}\phantom{61)}0\phantom{2}\\61\overline{)324}\\\end{array}
Since 3 is less than 61, use the next digit 2 from dividend 324 and add 0 to the quotient
\begin{array}{l}\phantom{61)}0\phantom{3}\\61\overline{)324}\\\end{array}
Use the 2^{nd} digit 2 from dividend 324
\begin{array}{l}\phantom{61)}00\phantom{4}\\61\overline{)324}\\\end{array}
Since 32 is less than 61, use the next digit 4 from dividend 324 and add 0 to the quotient
\begin{array}{l}\phantom{61)}00\phantom{5}\\61\overline{)324}\\\end{array}
Use the 3^{rd} digit 4 from dividend 324
\begin{array}{l}\phantom{61)}005\phantom{6}\\61\overline{)324}\\\phantom{61)}\underline{\phantom{}305\phantom{}}\\\phantom{61)9}19\\\end{array}
Find closest multiple of 61 to 324. We see that 5 \times 61 = 305 is the nearest. Now subtract 305 from 324 to get reminder 19. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }19
Since 19 is less than 61, stop the division. The reminder is 19. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}