Evaluate
-\frac{4t}{5s}
Differentiate w.r.t. s
\frac{4t}{5s^{2}}
Share
Copied to clipboard
\frac{32^{1}s^{2}t^{2}}{\left(-40\right)^{1}s^{3}t^{1}}
Use the rules of exponents to simplify the expression.
\frac{32^{1}}{\left(-40\right)^{1}}s^{2-3}t^{2-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{32^{1}}{\left(-40\right)^{1}}\times \frac{1}{s}t^{2-1}
Subtract 3 from 2.
\frac{32^{1}}{\left(-40\right)^{1}}\times \frac{1}{s}t^{1}
Subtract 1 from 2.
-\frac{4}{5}\times \frac{1}{s}t
Reduce the fraction \frac{32}{-40} to lowest terms by extracting and canceling out 8.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{32t^{2}}{-40t}s^{2-3})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}s}(\left(-\frac{4t}{5}\right)\times \frac{1}{s})
Do the arithmetic.
-\left(-\frac{4t}{5}\right)s^{-1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{4t}{5}s^{-2}
Do the arithmetic.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}