Solve for x
x=9
Graph
Share
Copied to clipboard
32-\left(x-4\right)=x\times 3
Variable x cannot be equal to any of the values 0,4 since division by zero is not defined. Multiply both sides of the equation by x\left(x-4\right), the least common multiple of x^{2}-4x,x,x-4.
32-x+4=x\times 3
To find the opposite of x-4, find the opposite of each term.
36-x=x\times 3
Add 32 and 4 to get 36.
36-x-x\times 3=0
Subtract x\times 3 from both sides.
36-4x=0
Combine -x and -x\times 3 to get -4x.
-4x=-36
Subtract 36 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-36}{-4}
Divide both sides by -4.
x=9
Divide -36 by -4 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}