Solve for x
x=-72
x=8
Graph
Share
Copied to clipboard
-\left(24+x\right)\times 32-\left(x-24\right)\times 32=\left(x-24\right)\left(x+24\right)
Variable x cannot be equal to any of the values -24,24 since division by zero is not defined. Multiply both sides of the equation by \left(x-24\right)\left(x+24\right), the least common multiple of 24-x,24+x.
\left(-24-x\right)\times 32-\left(x-24\right)\times 32=\left(x-24\right)\left(x+24\right)
To find the opposite of 24+x, find the opposite of each term.
-768-32x-\left(x-24\right)\times 32=\left(x-24\right)\left(x+24\right)
Use the distributive property to multiply -24-x by 32.
-768-32x-\left(32x-768\right)=\left(x-24\right)\left(x+24\right)
Use the distributive property to multiply x-24 by 32.
-768-32x-32x+768=\left(x-24\right)\left(x+24\right)
To find the opposite of 32x-768, find the opposite of each term.
-768-64x+768=\left(x-24\right)\left(x+24\right)
Combine -32x and -32x to get -64x.
-64x=\left(x-24\right)\left(x+24\right)
Add -768 and 768 to get 0.
-64x=x^{2}-576
Consider \left(x-24\right)\left(x+24\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 24.
-64x-x^{2}=-576
Subtract x^{2} from both sides.
-64x-x^{2}+576=0
Add 576 to both sides.
-x^{2}-64x+576=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\left(-1\right)\times 576}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -64 for b, and 576 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-64\right)±\sqrt{4096-4\left(-1\right)\times 576}}{2\left(-1\right)}
Square -64.
x=\frac{-\left(-64\right)±\sqrt{4096+4\times 576}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-64\right)±\sqrt{4096+2304}}{2\left(-1\right)}
Multiply 4 times 576.
x=\frac{-\left(-64\right)±\sqrt{6400}}{2\left(-1\right)}
Add 4096 to 2304.
x=\frac{-\left(-64\right)±80}{2\left(-1\right)}
Take the square root of 6400.
x=\frac{64±80}{2\left(-1\right)}
The opposite of -64 is 64.
x=\frac{64±80}{-2}
Multiply 2 times -1.
x=\frac{144}{-2}
Now solve the equation x=\frac{64±80}{-2} when ± is plus. Add 64 to 80.
x=-72
Divide 144 by -2.
x=-\frac{16}{-2}
Now solve the equation x=\frac{64±80}{-2} when ± is minus. Subtract 80 from 64.
x=8
Divide -16 by -2.
x=-72 x=8
The equation is now solved.
-\left(24+x\right)\times 32-\left(x-24\right)\times 32=\left(x-24\right)\left(x+24\right)
Variable x cannot be equal to any of the values -24,24 since division by zero is not defined. Multiply both sides of the equation by \left(x-24\right)\left(x+24\right), the least common multiple of 24-x,24+x.
\left(-24-x\right)\times 32-\left(x-24\right)\times 32=\left(x-24\right)\left(x+24\right)
To find the opposite of 24+x, find the opposite of each term.
-768-32x-\left(x-24\right)\times 32=\left(x-24\right)\left(x+24\right)
Use the distributive property to multiply -24-x by 32.
-768-32x-\left(32x-768\right)=\left(x-24\right)\left(x+24\right)
Use the distributive property to multiply x-24 by 32.
-768-32x-32x+768=\left(x-24\right)\left(x+24\right)
To find the opposite of 32x-768, find the opposite of each term.
-768-64x+768=\left(x-24\right)\left(x+24\right)
Combine -32x and -32x to get -64x.
-64x=\left(x-24\right)\left(x+24\right)
Add -768 and 768 to get 0.
-64x=x^{2}-576
Consider \left(x-24\right)\left(x+24\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 24.
-64x-x^{2}=-576
Subtract x^{2} from both sides.
-x^{2}-64x=-576
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-64x}{-1}=-\frac{576}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{64}{-1}\right)x=-\frac{576}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+64x=-\frac{576}{-1}
Divide -64 by -1.
x^{2}+64x=576
Divide -576 by -1.
x^{2}+64x+32^{2}=576+32^{2}
Divide 64, the coefficient of the x term, by 2 to get 32. Then add the square of 32 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+64x+1024=576+1024
Square 32.
x^{2}+64x+1024=1600
Add 576 to 1024.
\left(x+32\right)^{2}=1600
Factor x^{2}+64x+1024. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+32\right)^{2}}=\sqrt{1600}
Take the square root of both sides of the equation.
x+32=40 x+32=-40
Simplify.
x=8 x=-72
Subtract 32 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}