Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(32\sqrt{3}+4\right)\left(3\sqrt{2}+4\right)}{\left(3\sqrt{2}-4\right)\left(3\sqrt{2}+4\right)}
Rationalize the denominator of \frac{32\sqrt{3}+4}{3\sqrt{2}-4} by multiplying numerator and denominator by 3\sqrt{2}+4.
\frac{\left(32\sqrt{3}+4\right)\left(3\sqrt{2}+4\right)}{\left(3\sqrt{2}\right)^{2}-4^{2}}
Consider \left(3\sqrt{2}-4\right)\left(3\sqrt{2}+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(32\sqrt{3}+4\right)\left(3\sqrt{2}+4\right)}{3^{2}\left(\sqrt{2}\right)^{2}-4^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\left(32\sqrt{3}+4\right)\left(3\sqrt{2}+4\right)}{9\left(\sqrt{2}\right)^{2}-4^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(32\sqrt{3}+4\right)\left(3\sqrt{2}+4\right)}{9\times 2-4^{2}}
The square of \sqrt{2} is 2.
\frac{\left(32\sqrt{3}+4\right)\left(3\sqrt{2}+4\right)}{18-4^{2}}
Multiply 9 and 2 to get 18.
\frac{\left(32\sqrt{3}+4\right)\left(3\sqrt{2}+4\right)}{18-16}
Calculate 4 to the power of 2 and get 16.
\frac{\left(32\sqrt{3}+4\right)\left(3\sqrt{2}+4\right)}{2}
Subtract 16 from 18 to get 2.
\frac{96\sqrt{3}\sqrt{2}+128\sqrt{3}+12\sqrt{2}+16}{2}
Apply the distributive property by multiplying each term of 32\sqrt{3}+4 by each term of 3\sqrt{2}+4.
\frac{96\sqrt{6}+128\sqrt{3}+12\sqrt{2}+16}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.