Evaluate
\frac{159}{41}\approx 3.87804878
Factor
\frac{3 \cdot 53}{41} = 3\frac{36}{41} = 3.8780487804878048
Share
Copied to clipboard
\begin{array}{l}\phantom{82)}\phantom{1}\\82\overline{)318}\\\end{array}
Use the 1^{st} digit 3 from dividend 318
\begin{array}{l}\phantom{82)}0\phantom{2}\\82\overline{)318}\\\end{array}
Since 3 is less than 82, use the next digit 1 from dividend 318 and add 0 to the quotient
\begin{array}{l}\phantom{82)}0\phantom{3}\\82\overline{)318}\\\end{array}
Use the 2^{nd} digit 1 from dividend 318
\begin{array}{l}\phantom{82)}00\phantom{4}\\82\overline{)318}\\\end{array}
Since 31 is less than 82, use the next digit 8 from dividend 318 and add 0 to the quotient
\begin{array}{l}\phantom{82)}00\phantom{5}\\82\overline{)318}\\\end{array}
Use the 3^{rd} digit 8 from dividend 318
\begin{array}{l}\phantom{82)}003\phantom{6}\\82\overline{)318}\\\phantom{82)}\underline{\phantom{}246\phantom{}}\\\phantom{82)9}72\\\end{array}
Find closest multiple of 82 to 318. We see that 3 \times 82 = 246 is the nearest. Now subtract 246 from 318 to get reminder 72. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }72
Since 72 is less than 82, stop the division. The reminder is 72. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}