Evaluate
\frac{6283}{2000}=3.1415
Factor
\frac{61 \cdot 103}{2 ^ {4} \cdot 5 ^ {3}} = 3\frac{283}{2000} = 3.1415
Share
Copied to clipboard
\begin{array}{l}\phantom{10000)}\phantom{1}\\10000\overline{)31415}\\\end{array}
Use the 1^{st} digit 3 from dividend 31415
\begin{array}{l}\phantom{10000)}0\phantom{2}\\10000\overline{)31415}\\\end{array}
Since 3 is less than 10000, use the next digit 1 from dividend 31415 and add 0 to the quotient
\begin{array}{l}\phantom{10000)}0\phantom{3}\\10000\overline{)31415}\\\end{array}
Use the 2^{nd} digit 1 from dividend 31415
\begin{array}{l}\phantom{10000)}00\phantom{4}\\10000\overline{)31415}\\\end{array}
Since 31 is less than 10000, use the next digit 4 from dividend 31415 and add 0 to the quotient
\begin{array}{l}\phantom{10000)}00\phantom{5}\\10000\overline{)31415}\\\end{array}
Use the 3^{rd} digit 4 from dividend 31415
\begin{array}{l}\phantom{10000)}000\phantom{6}\\10000\overline{)31415}\\\end{array}
Since 314 is less than 10000, use the next digit 1 from dividend 31415 and add 0 to the quotient
\begin{array}{l}\phantom{10000)}000\phantom{7}\\10000\overline{)31415}\\\end{array}
Use the 4^{th} digit 1 from dividend 31415
\begin{array}{l}\phantom{10000)}0000\phantom{8}\\10000\overline{)31415}\\\end{array}
Since 3141 is less than 10000, use the next digit 5 from dividend 31415 and add 0 to the quotient
\begin{array}{l}\phantom{10000)}0000\phantom{9}\\10000\overline{)31415}\\\end{array}
Use the 5^{th} digit 5 from dividend 31415
\begin{array}{l}\phantom{10000)}00003\phantom{10}\\10000\overline{)31415}\\\phantom{10000)}\underline{\phantom{}30000\phantom{}}\\\phantom{10000)9}1415\\\end{array}
Find closest multiple of 10000 to 31415. We see that 3 \times 10000 = 30000 is the nearest. Now subtract 30000 from 31415 to get reminder 1415. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }1415
Since 1415 is less than 10000, stop the division. The reminder is 1415. The topmost line 00003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}