Evaluate
\frac{31}{12}\approx 2.583333333
Factor
\frac{31}{2 ^ {2} \cdot 3} = 2\frac{7}{12} = 2.5833333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)31}\\\end{array}
Use the 1^{st} digit 3 from dividend 31
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)31}\\\end{array}
Since 3 is less than 12, use the next digit 1 from dividend 31 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)31}\\\end{array}
Use the 2^{nd} digit 1 from dividend 31
\begin{array}{l}\phantom{12)}02\phantom{4}\\12\overline{)31}\\\phantom{12)}\underline{\phantom{}24\phantom{}}\\\phantom{12)9}7\\\end{array}
Find closest multiple of 12 to 31. We see that 2 \times 12 = 24 is the nearest. Now subtract 24 from 31 to get reminder 7. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }7
Since 7 is less than 12, stop the division. The reminder is 7. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}