Evaluate
11
Factor
11
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)308}\\\end{array}
Use the 1^{st} digit 3 from dividend 308
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)308}\\\end{array}
Since 3 is less than 28, use the next digit 0 from dividend 308 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)308}\\\end{array}
Use the 2^{nd} digit 0 from dividend 308
\begin{array}{l}\phantom{28)}01\phantom{4}\\28\overline{)308}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)9}2\\\end{array}
Find closest multiple of 28 to 30. We see that 1 \times 28 = 28 is the nearest. Now subtract 28 from 30 to get reminder 2. Add 1 to quotient.
\begin{array}{l}\phantom{28)}01\phantom{5}\\28\overline{)308}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)9}28\\\end{array}
Use the 3^{rd} digit 8 from dividend 308
\begin{array}{l}\phantom{28)}011\phantom{6}\\28\overline{)308}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)9}28\\\phantom{28)}\underline{\phantom{9}28\phantom{}}\\\phantom{28)999}0\\\end{array}
Find closest multiple of 28 to 28. We see that 1 \times 28 = 28 is the nearest. Now subtract 28 from 28 to get reminder 0. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }0
Since 0 is less than 28, stop the division. The reminder is 0. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}