Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

150x^{2}=7.8\times 4200\left(406-x\right)
Divide 300 by 2 to get 150.
150x^{2}=32760\left(406-x\right)
Multiply 7.8 and 4200 to get 32760.
150x^{2}=13300560-32760x
Use the distributive property to multiply 32760 by 406-x.
150x^{2}-13300560=-32760x
Subtract 13300560 from both sides.
150x^{2}-13300560+32760x=0
Add 32760x to both sides.
150x^{2}+32760x-13300560=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-32760±\sqrt{32760^{2}-4\times 150\left(-13300560\right)}}{2\times 150}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 150 for a, 32760 for b, and -13300560 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32760±\sqrt{1073217600-4\times 150\left(-13300560\right)}}{2\times 150}
Square 32760.
x=\frac{-32760±\sqrt{1073217600-600\left(-13300560\right)}}{2\times 150}
Multiply -4 times 150.
x=\frac{-32760±\sqrt{1073217600+7980336000}}{2\times 150}
Multiply -600 times -13300560.
x=\frac{-32760±\sqrt{9053553600}}{2\times 150}
Add 1073217600 to 7980336000.
x=\frac{-32760±840\sqrt{12831}}{2\times 150}
Take the square root of 9053553600.
x=\frac{-32760±840\sqrt{12831}}{300}
Multiply 2 times 150.
x=\frac{840\sqrt{12831}-32760}{300}
Now solve the equation x=\frac{-32760±840\sqrt{12831}}{300} when ± is plus. Add -32760 to 840\sqrt{12831}.
x=\frac{14\sqrt{12831}-546}{5}
Divide -32760+840\sqrt{12831} by 300.
x=\frac{-840\sqrt{12831}-32760}{300}
Now solve the equation x=\frac{-32760±840\sqrt{12831}}{300} when ± is minus. Subtract 840\sqrt{12831} from -32760.
x=\frac{-14\sqrt{12831}-546}{5}
Divide -32760-840\sqrt{12831} by 300.
x=\frac{14\sqrt{12831}-546}{5} x=\frac{-14\sqrt{12831}-546}{5}
The equation is now solved.
150x^{2}=7.8\times 4200\left(406-x\right)
Divide 300 by 2 to get 150.
150x^{2}=32760\left(406-x\right)
Multiply 7.8 and 4200 to get 32760.
150x^{2}=13300560-32760x
Use the distributive property to multiply 32760 by 406-x.
150x^{2}+32760x=13300560
Add 32760x to both sides.
\frac{150x^{2}+32760x}{150}=\frac{13300560}{150}
Divide both sides by 150.
x^{2}+\frac{32760}{150}x=\frac{13300560}{150}
Dividing by 150 undoes the multiplication by 150.
x^{2}+\frac{1092}{5}x=\frac{13300560}{150}
Reduce the fraction \frac{32760}{150} to lowest terms by extracting and canceling out 30.
x^{2}+\frac{1092}{5}x=\frac{443352}{5}
Reduce the fraction \frac{13300560}{150} to lowest terms by extracting and canceling out 30.
x^{2}+\frac{1092}{5}x+\left(\frac{546}{5}\right)^{2}=\frac{443352}{5}+\left(\frac{546}{5}\right)^{2}
Divide \frac{1092}{5}, the coefficient of the x term, by 2 to get \frac{546}{5}. Then add the square of \frac{546}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1092}{5}x+\frac{298116}{25}=\frac{443352}{5}+\frac{298116}{25}
Square \frac{546}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1092}{5}x+\frac{298116}{25}=\frac{2514876}{25}
Add \frac{443352}{5} to \frac{298116}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{546}{5}\right)^{2}=\frac{2514876}{25}
Factor x^{2}+\frac{1092}{5}x+\frac{298116}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{546}{5}\right)^{2}}=\sqrt{\frac{2514876}{25}}
Take the square root of both sides of the equation.
x+\frac{546}{5}=\frac{14\sqrt{12831}}{5} x+\frac{546}{5}=-\frac{14\sqrt{12831}}{5}
Simplify.
x=\frac{14\sqrt{12831}-546}{5} x=\frac{-14\sqrt{12831}-546}{5}
Subtract \frac{546}{5} from both sides of the equation.