Solve for x
x>120
Graph
Share
Copied to clipboard
30x+12\times 600>15\left(x+600\right)
Multiply both sides of the equation by 100. Since 100 is positive, the inequality direction remains the same.
30x+7200>15\left(x+600\right)
Multiply 12 and 600 to get 7200.
30x+7200>15x+9000
Use the distributive property to multiply 15 by x+600.
30x+7200-15x>9000
Subtract 15x from both sides.
15x+7200>9000
Combine 30x and -15x to get 15x.
15x>9000-7200
Subtract 7200 from both sides.
15x>1800
Subtract 7200 from 9000 to get 1800.
x>\frac{1800}{15}
Divide both sides by 15. Since 15 is positive, the inequality direction remains the same.
x>120
Divide 1800 by 15 to get 120.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}