Evaluate
\frac{9}{3a-1}
Differentiate w.r.t. a
-\frac{27}{\left(3a-1\right)^{2}}
Share
Copied to clipboard
\frac{30a}{\left(3a-1\right)\left(3a+1\right)}+\frac{4}{3a-1}-\frac{5}{3a+1}
Factor 9a^{2}-1.
\frac{30a}{\left(3a-1\right)\left(3a+1\right)}+\frac{4\left(3a+1\right)}{\left(3a-1\right)\left(3a+1\right)}-\frac{5}{3a+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3a-1\right)\left(3a+1\right) and 3a-1 is \left(3a-1\right)\left(3a+1\right). Multiply \frac{4}{3a-1} times \frac{3a+1}{3a+1}.
\frac{30a+4\left(3a+1\right)}{\left(3a-1\right)\left(3a+1\right)}-\frac{5}{3a+1}
Since \frac{30a}{\left(3a-1\right)\left(3a+1\right)} and \frac{4\left(3a+1\right)}{\left(3a-1\right)\left(3a+1\right)} have the same denominator, add them by adding their numerators.
\frac{30a+12a+4}{\left(3a-1\right)\left(3a+1\right)}-\frac{5}{3a+1}
Do the multiplications in 30a+4\left(3a+1\right).
\frac{42a+4}{\left(3a-1\right)\left(3a+1\right)}-\frac{5}{3a+1}
Combine like terms in 30a+12a+4.
\frac{42a+4}{\left(3a-1\right)\left(3a+1\right)}-\frac{5\left(3a-1\right)}{\left(3a-1\right)\left(3a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3a-1\right)\left(3a+1\right) and 3a+1 is \left(3a-1\right)\left(3a+1\right). Multiply \frac{5}{3a+1} times \frac{3a-1}{3a-1}.
\frac{42a+4-5\left(3a-1\right)}{\left(3a-1\right)\left(3a+1\right)}
Since \frac{42a+4}{\left(3a-1\right)\left(3a+1\right)} and \frac{5\left(3a-1\right)}{\left(3a-1\right)\left(3a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{42a+4-15a+5}{\left(3a-1\right)\left(3a+1\right)}
Do the multiplications in 42a+4-5\left(3a-1\right).
\frac{27a+9}{\left(3a-1\right)\left(3a+1\right)}
Combine like terms in 42a+4-15a+5.
\frac{9\left(3a+1\right)}{\left(3a-1\right)\left(3a+1\right)}
Factor the expressions that are not already factored in \frac{27a+9}{\left(3a-1\right)\left(3a+1\right)}.
\frac{9}{3a-1}
Cancel out 3a+1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}