Solve for x
x = \frac{15 {(\sqrt{3} + 1)}}{2} \approx 20.490381057
Graph
Share
Copied to clipboard
3\left(30-\left(x-10\right)\sqrt{3}\right)=x\sqrt{3}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x, the least common multiple of x,3.
3\left(30-\left(x\sqrt{3}-10\sqrt{3}\right)\right)=x\sqrt{3}
Use the distributive property to multiply x-10 by \sqrt{3}.
3\left(30-x\sqrt{3}-\left(-10\sqrt{3}\right)\right)=x\sqrt{3}
To find the opposite of x\sqrt{3}-10\sqrt{3}, find the opposite of each term.
3\left(30-x\sqrt{3}+10\sqrt{3}\right)=x\sqrt{3}
The opposite of -10\sqrt{3} is 10\sqrt{3}.
90-3\sqrt{3}x+30\sqrt{3}=x\sqrt{3}
Use the distributive property to multiply 3 by 30-x\sqrt{3}+10\sqrt{3}.
90-3\sqrt{3}x+30\sqrt{3}-x\sqrt{3}=0
Subtract x\sqrt{3} from both sides.
90-4\sqrt{3}x+30\sqrt{3}=0
Combine -3\sqrt{3}x and -x\sqrt{3} to get -4\sqrt{3}x.
-4\sqrt{3}x+30\sqrt{3}=-90
Subtract 90 from both sides. Anything subtracted from zero gives its negation.
-4\sqrt{3}x=-90-30\sqrt{3}
Subtract 30\sqrt{3} from both sides.
\left(-4\sqrt{3}\right)x=-30\sqrt{3}-90
The equation is in standard form.
\frac{\left(-4\sqrt{3}\right)x}{-4\sqrt{3}}=\frac{-30\sqrt{3}-90}{-4\sqrt{3}}
Divide both sides by -4\sqrt{3}.
x=\frac{-30\sqrt{3}-90}{-4\sqrt{3}}
Dividing by -4\sqrt{3} undoes the multiplication by -4\sqrt{3}.
x=\frac{15\sqrt{3}+15}{2}
Divide -90-30\sqrt{3} by -4\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}