Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{30}{5-2\sqrt{5}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{30\left(5+2\sqrt{5}\right)}{\left(5-2\sqrt{5}\right)\left(5+2\sqrt{5}\right)}
Rationalize the denominator of \frac{30}{5-2\sqrt{5}} by multiplying numerator and denominator by 5+2\sqrt{5}.
\frac{30\left(5+2\sqrt{5}\right)}{5^{2}-\left(-2\sqrt{5}\right)^{2}}
Consider \left(5-2\sqrt{5}\right)\left(5+2\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{30\left(5+2\sqrt{5}\right)}{25-\left(-2\sqrt{5}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{30\left(5+2\sqrt{5}\right)}{25-\left(-2\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(-2\sqrt{5}\right)^{2}.
\frac{30\left(5+2\sqrt{5}\right)}{25-4\left(\sqrt{5}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{30\left(5+2\sqrt{5}\right)}{25-4\times 5}
The square of \sqrt{5} is 5.
\frac{30\left(5+2\sqrt{5}\right)}{25-20}
Multiply 4 and 5 to get 20.
\frac{30\left(5+2\sqrt{5}\right)}{5}
Subtract 20 from 25 to get 5.
6\left(5+2\sqrt{5}\right)
Divide 30\left(5+2\sqrt{5}\right) by 5 to get 6\left(5+2\sqrt{5}\right).
30+12\sqrt{5}
Use the distributive property to multiply 6 by 5+2\sqrt{5}.