Solve for R
R = \frac{1140}{83} = 13\frac{61}{83} \approx 13.734939759
Share
Copied to clipboard
4R\times 30-\left(-3R\times 1.5\right)=60\left(30-1.5\right)
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 60R, the least common multiple of 15,-20,R.
120R-\left(-3R\times 1.5\right)=60\left(30-1.5\right)
Multiply 4 and 30 to get 120.
120R-\left(-4.5R\right)=60\left(30-1.5\right)
Multiply -3 and 1.5 to get -4.5.
120R+4.5R=60\left(30-1.5\right)
The opposite of -4.5R is 4.5R.
124.5R=60\left(30-1.5\right)
Combine 120R and 4.5R to get 124.5R.
124.5R=60\times 28.5
Subtract 1.5 from 30 to get 28.5.
124.5R=1710
Multiply 60 and 28.5 to get 1710.
R=\frac{1710}{124.5}
Divide both sides by 124.5.
R=\frac{17100}{1245}
Expand \frac{1710}{124.5} by multiplying both numerator and the denominator by 10.
R=\frac{1140}{83}
Reduce the fraction \frac{17100}{1245} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}