Evaluate
2\sqrt{15}+15\sqrt{2}\approx 28.959170128
Share
Copied to clipboard
\frac{30\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{30}{\sqrt{6}}+\frac{30}{\sqrt{15}}-\frac{30}{\sqrt{10}}-\sqrt{2}\left(5\sqrt{3}-3\sqrt{5}\right)
Rationalize the denominator of \frac{30}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{30\sqrt{2}}{2}+\frac{30}{\sqrt{6}}+\frac{30}{\sqrt{15}}-\frac{30}{\sqrt{10}}-\sqrt{2}\left(5\sqrt{3}-3\sqrt{5}\right)
The square of \sqrt{2} is 2.
15\sqrt{2}+\frac{30}{\sqrt{6}}+\frac{30}{\sqrt{15}}-\frac{30}{\sqrt{10}}-\sqrt{2}\left(5\sqrt{3}-3\sqrt{5}\right)
Divide 30\sqrt{2} by 2 to get 15\sqrt{2}.
15\sqrt{2}+\frac{30\sqrt{6}}{\left(\sqrt{6}\right)^{2}}+\frac{30}{\sqrt{15}}-\frac{30}{\sqrt{10}}-\sqrt{2}\left(5\sqrt{3}-3\sqrt{5}\right)
Rationalize the denominator of \frac{30}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
15\sqrt{2}+\frac{30\sqrt{6}}{6}+\frac{30}{\sqrt{15}}-\frac{30}{\sqrt{10}}-\sqrt{2}\left(5\sqrt{3}-3\sqrt{5}\right)
The square of \sqrt{6} is 6.
15\sqrt{2}+5\sqrt{6}+\frac{30}{\sqrt{15}}-\frac{30}{\sqrt{10}}-\sqrt{2}\left(5\sqrt{3}-3\sqrt{5}\right)
Divide 30\sqrt{6} by 6 to get 5\sqrt{6}.
15\sqrt{2}+5\sqrt{6}+\frac{30\sqrt{15}}{\left(\sqrt{15}\right)^{2}}-\frac{30}{\sqrt{10}}-\sqrt{2}\left(5\sqrt{3}-3\sqrt{5}\right)
Rationalize the denominator of \frac{30}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
15\sqrt{2}+5\sqrt{6}+\frac{30\sqrt{15}}{15}-\frac{30}{\sqrt{10}}-\sqrt{2}\left(5\sqrt{3}-3\sqrt{5}\right)
The square of \sqrt{15} is 15.
15\sqrt{2}+5\sqrt{6}+2\sqrt{15}-\frac{30}{\sqrt{10}}-\sqrt{2}\left(5\sqrt{3}-3\sqrt{5}\right)
Divide 30\sqrt{15} by 15 to get 2\sqrt{15}.
15\sqrt{2}+5\sqrt{6}+2\sqrt{15}-\frac{30\sqrt{10}}{\left(\sqrt{10}\right)^{2}}-\sqrt{2}\left(5\sqrt{3}-3\sqrt{5}\right)
Rationalize the denominator of \frac{30}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
15\sqrt{2}+5\sqrt{6}+2\sqrt{15}-\frac{30\sqrt{10}}{10}-\sqrt{2}\left(5\sqrt{3}-3\sqrt{5}\right)
The square of \sqrt{10} is 10.
15\sqrt{2}+5\sqrt{6}+2\sqrt{15}-3\sqrt{10}-\sqrt{2}\left(5\sqrt{3}-3\sqrt{5}\right)
Divide 30\sqrt{10} by 10 to get 3\sqrt{10}.
15\sqrt{2}+5\sqrt{6}+2\sqrt{15}-3\sqrt{10}-\left(5\sqrt{2}\sqrt{3}-3\sqrt{2}\sqrt{5}\right)
Use the distributive property to multiply \sqrt{2} by 5\sqrt{3}-3\sqrt{5}.
15\sqrt{2}+5\sqrt{6}+2\sqrt{15}-3\sqrt{10}-\left(5\sqrt{6}-3\sqrt{2}\sqrt{5}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
15\sqrt{2}+5\sqrt{6}+2\sqrt{15}-3\sqrt{10}-\left(5\sqrt{6}-3\sqrt{10}\right)
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
15\sqrt{2}+5\sqrt{6}+2\sqrt{15}-3\sqrt{10}-5\sqrt{6}-\left(-3\sqrt{10}\right)
To find the opposite of 5\sqrt{6}-3\sqrt{10}, find the opposite of each term.
15\sqrt{2}+2\sqrt{15}-3\sqrt{10}-\left(-3\sqrt{10}\right)
Combine 5\sqrt{6} and -5\sqrt{6} to get 0.
15\sqrt{2}+2\sqrt{15}-3\sqrt{10}+3\sqrt{10}
The opposite of -3\sqrt{10} is 3\sqrt{10}.
15\sqrt{2}+2\sqrt{15}
Combine -3\sqrt{10} and 3\sqrt{10} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}