Solve for F
F=\frac{2\left(r+30\right)}{3}
r\neq -30
Solve for r
r=\frac{3\left(F-20\right)}{2}
F\neq 0
Share
Copied to clipboard
30F=20\left(r+30\right)
Multiply both sides of the equation by r+30.
30F=20r+600
Use the distributive property to multiply 20 by r+30.
\frac{30F}{30}=\frac{20r+600}{30}
Divide both sides by 30.
F=\frac{20r+600}{30}
Dividing by 30 undoes the multiplication by 30.
F=\frac{2r}{3}+20
Divide 600+20r by 30.
30F=20\left(r+30\right)
Variable r cannot be equal to -30 since division by zero is not defined. Multiply both sides of the equation by r+30.
30F=20r+600
Use the distributive property to multiply 20 by r+30.
20r+600=30F
Swap sides so that all variable terms are on the left hand side.
20r=30F-600
Subtract 600 from both sides.
\frac{20r}{20}=\frac{30F-600}{20}
Divide both sides by 20.
r=\frac{30F-600}{20}
Dividing by 20 undoes the multiplication by 20.
r=\frac{3F}{2}-30
Divide -600+30F by 20.
r=\frac{3F}{2}-30\text{, }r\neq -30
Variable r cannot be equal to -30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}