Evaluate
-\frac{1884}{69376430141}\approx -0.000000027
Factor
-\frac{1884}{69376430141} = -2.7156196941396034 \times 10^{-8}
Share
Copied to clipboard
\frac{18840\times 10^{-5}}{367-254\times 27315-141\times 10^{-4}}
Multiply 30 and 628 to get 18840.
\frac{18840\times \frac{1}{100000}}{367-254\times 27315-141\times 10^{-4}}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
\frac{\frac{471}{2500}}{367-254\times 27315-141\times 10^{-4}}
Multiply 18840 and \frac{1}{100000} to get \frac{471}{2500}.
\frac{\frac{471}{2500}}{367-6938010-141\times 10^{-4}}
Multiply 254 and 27315 to get 6938010.
\frac{\frac{471}{2500}}{-6937643-141\times 10^{-4}}
Subtract 6938010 from 367 to get -6937643.
\frac{\frac{471}{2500}}{-6937643-141\times \frac{1}{10000}}
Calculate 10 to the power of -4 and get \frac{1}{10000}.
\frac{\frac{471}{2500}}{-6937643-\frac{141}{10000}}
Multiply 141 and \frac{1}{10000} to get \frac{141}{10000}.
\frac{\frac{471}{2500}}{-\frac{69376430141}{10000}}
Subtract \frac{141}{10000} from -6937643 to get -\frac{69376430141}{10000}.
\frac{471}{2500}\left(-\frac{10000}{69376430141}\right)
Divide \frac{471}{2500} by -\frac{69376430141}{10000} by multiplying \frac{471}{2500} by the reciprocal of -\frac{69376430141}{10000}.
-\frac{1884}{69376430141}
Multiply \frac{471}{2500} and -\frac{10000}{69376430141} to get -\frac{1884}{69376430141}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}